Answer:
Point A
Explanation:
The work done by stretching or compressing a spring is given by E=1/2kx²
The potential energy is numerically equal to the work done.
This means that the higher the bigger the value of the extension, x, the higher the energy contained.
In this scenario the modulus of x is considered.
Among the given values of x the modulus of -5 is the largest.
thus it gives the highest value of energy.
Answer:
It is easier to stop the bicycle moving at a lower velocity because it will require a <em>smaller force</em> to stop it when compared to a bicycle with a higher velocity that needs a<em> bigger force.</em>
Explanation:
The question above is related to "Newton's Law of Motion." According to the <em>Third Law of Motion</em>, whenever an object exerts a force on another object <em>(action force)</em>, an equal force is exerted against it. This force is of the same magnitude but opposite direction.
When it comes to moving bicycles, the force that stops their movement is called "friction." Applying the law of motion, the higher the speed, the higher the force<em> </em>that is needed to stop it while the lower the speed, the lower the force<em> </em>that is needed to stop it.
Answer:
K = -½U
Explanation:
From Newton's law of gravitation, the formula for gravitational potential energy is;
U = -GMm/R
Where,
G is gravitational constant
M and m are the two masses exerting the forces
R is the distance between the two objects
Now, in the question, we are given that kinetic energy is;
K = GMm/2R
Re-rranging, we have;
K = ½(GMm/R)
Comparing the equation of kinetic energy to that of potential energy, we can derive that gravitational kinetic energy can be expressed in terms of potential energy as;
K = -½U
Answer: 1,600 seconds
Explanation:
31,360/9.8 = 3,200.
Then divide 3,200/2 = 1,600
The displacement vector (SI units) is
![\vec{r} =At\hat{i}+A[t^{3}-6t^{2}]\hat{j}](https://tex.z-dn.net/?f=%5Cvec%7Br%7D%20%3DAt%5Chat%7Bi%7D%2BA%5Bt%5E%7B3%7D-6t%5E%7B2%7D%5D%5Chat%7Bj%7D)
The speed is a scalar quantity. Its magnitude is

Answer: At√(t⁴ - 12t³ + 36t² + 1)