Modern space suits augment the basic pressure garment with a complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.
Three types of spacesuits exist for different purposes: IVA (intravehicular activity), EVA (extravehicular activity), and IEVA (intra/extravehicular activity). IVA suits are meant to be worn inside a pressurized spacecraft, and are therefore lighter and more comfortable. IEVA suits are meant for use inside and outside the spacecraft, such as the Gemini G4C suit. They include more protection from the harsh conditions of space, such as protection from micrometeorites and extreme temperature change. EVA suits, such as the EMU, are used outside spacecraft, for either planetary exploration or spacewalks. They must protect the wearer against all conditions of space, as well as provide mobility and functionality.
Answer:
Light's angle of refraction = 37.1° (Approx.)
Explanation:
Given:
Index of refraction = 1.02
Base of refraction = 1
Angle of incidence = 38°
Find:
Light's angle of refraction
Computation:
Using Snell's law;
Sin[Angle of incidence] / Sin[Light's angle of refraction] = Index of refraction / Base of refraction
Sin38 / Light's angle of refraction = 1.02 / 1
Sin[Light's angle of refraction] = Sin 38 / 1.02
Sin[Light's angle of refraction] = [0.6156] / 1.02
Sin[Light's angle of refraction] = 0.6035
Light's angle of refraction = 37.1° (Approx.)
<h2>2) Copernicus rediscovered Aristarchus’s heliocentric model.</h2>
Before Copernican Revolution, people did believe in the ptolemain model that establishes the description of the Universe with the earth at the center having sun, moon, starts and planets all orbited earth. On the other hand, the heliocentric model establishes the sun at the center of the solar system and this starts with the publication of Nicolas Copernicus named <em>De revolutionibus orbium coelestium.</em>
<h2>5) Newton’s theories of gravity increased understanding of the movement of planets.</h2>
The revolution ended with Isaac Newton's work over a century later. As you well know, Newton was both a physicist and mathematician, better known for his prodigal work called <em>Philosophiæ Naturalis Principia Mathematica. </em>In this revolution, he is known for his laws of motion and universal gravitation increasing understanding of the movement of planets.
The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
Answer:
Check the diagram from the photo
Explanation: