Answer:
Wavelength = 1.36 * 10^{-34} meters
Explanation:
Given the following data;
Mass = 0.113 kg
Velocity = 43 m/s
To find the wavelength, we would use the De Broglie's wave equation.
Mathematically, it is given by the formula;

Where;
h represents Planck’s constant.
m represents the mass of the particle.
v represents the velocity of the particle.
We know that Planck’s constant = 6.6262 * 10^{-34} Js
Substituting into the formula, we have;


Wavelength = 1.36 * 10^{-34} meters
Answer:
13.33 seconds
Explanation:
I = Q/t
t = Q/I = 4/0.3 = 13.33 seconds
Answer:
Maximum acceleration in the simple harmonic motion will be
Explanation:
We have given amplitude of simple harmonic motion is A = 0.43 m
Time period of the oscillation is T = 3.9 sec
We have to find the maximum acceleration
For this we have to find the angular frequency
Angular frequency will be equal to 
Maximum acceleration is given by 
So maximum acceleration in the simple harmonic motion will be
Answer:
Yes it would be different on Earth and the moon
The answer to this question would be: a spring scale.
The spring scale that you use to determine your body weight is actually a device that measures your body gravitational force. The force itself influenced by your body weight, that is why it can determine your body weight.
More weight means more force, more force will shrink the spring more.