1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wolverine [178]
3 years ago
10

Solve this problem 3 Times 7

Mathematics
2 answers:
77julia77 [94]3 years ago
7 0

Answer:

3x7=21

Step-by-step explanation:

7+7+7=21 or   3+3+3+3+3+3+3=21

Brainliest

34kurt3 years ago
4 0

Answer:

3 times 7 is 21

Step-by-step explanation:

You might be interested in
Sequence of numbers 1.5,2.25,3.0,3.75 in a recursive formula?
stellarik [79]

Answer:

f(n + 1) = f(n) + 0.75

Step-by-step explanation:

7 0
3 years ago
Solve for z.<br><br> 3 + 9z = –7 + 10z<br><br> z =
stiv31 [10]
The answer should be z = 10
6 0
3 years ago
Read 2 more answers
2, 2, 3 can be lengths of the sides of a triangle. true or false
Vinil7 [7]

Answer:

Yes

Step-by-step explanation:

The sum of any 2 sides of a triangle are greater than the 3rd side.

2,2,3 satisfies this condition.

3 0
4 years ago
Read 2 more answers
Complete the assignment on a separate sheet of paper<br><br> Please attach pictures of your work.
Irina18 [472]

Answer:

<u>TO FIND :-</u>

  • Length of all missing sides.

<u>FORMULAES TO KNOW BEFORE SOLVING :-</u>

  • \sin \theta = \frac{Side \: opposite \: to \: \theta}{Hypotenuse}
  • \cos \theta = \frac{Side \: adjacent \: to \: \theta}{Hypotenuse}
  • \tan \theta = \frac{Side \: opposite \: to \: \theta}{Side \: adjacent \: to \: \theta}

<u>SOLUTION :-</u>

1) θ = 16°

Length of side opposite to θ = 7

Hypotenuse = x

=> \sin 16 = \frac{7}{x}

=> \frac{7}{x} = 0.27563......

=> x = \frac{7}{0.27563....} = 25.39568..... ≈ 25.3

2) θ = 29°

Length of side opposite to θ = 6

Hypotenuse = x

=> \sin 29 = \frac{6}{x}

=> \frac{6}{x} = 0.48480......

=> x = \frac{6}{0.48480....} = 12.37599..... ≈ 12.3

3) θ = 30°

Length of side opposite to θ = x

Hypotenuse = 11

=> \sin 30 = \frac{x}{11}

=> \frac{x}{11} = 0.5

=> x = 0.5 \times 11 = 5.5

4) θ = 43°

Length of side adjacent to θ = x

Hypotenuse = 12

=> \cos 43 = \frac{x}{12}

=> \frac{x}{12} = 0.73135......

=> x = 12 \times 0.73135.... = 8.77624.... ≈ 8.8

5) θ = 55°

Length of side adjacent to θ = x

Hypotenuse = 6

=> \cos 55 = \frac{x}{6}

=> \frac{x}{6} = 0.57357......

=> x = 6 \times 0.57357.... = 3.44145.... ≈ 3.4

6) θ = 73°

Length of side adjacent to θ = 8

Hypotenuse = x

=> \cos 73 = \frac{8}{x}

=> \frac{8}{x} = 0.29237......

=> x = \frac{8}{0.29237.....} = 27.36242..... ≈ 27.3

7) θ = 69°

Length of side opposite to θ = 12

Length of side adjacent to θ = x

=> \tan 69 = \frac{12}{x}

=> \frac{12}{x} = 2.60508......

=> x = \frac{12}{2.60508....}  = 4.60636.... ≈ 4.6

8) θ = 20°

Length of side opposite to θ = 11

Length of side adjacent to θ = x

=> \tan 20 = \frac{11}{x}

=> \frac{11}{x} = 0.36397......

=> x = \frac{11}{0.36397....}  =30.22225.... ≈ 30.2

5 0
3 years ago
If a/b &lt; c/d with b &gt; 0, d &gt; 0, prove that a+c / b+d lies between the two fractions a/b and c/d .​
Tems11 [23]

Divide through everything by <em>b</em> :

\dfrac{a+c}{b+d} = \dfrac{\dfrac ab + \dfrac cb}{1 + \dfrac db}

Since <em>a/b</em> < <em>c/d</em>, it follows that

\dfrac{a+c}{b+d} < \dfrac{\dfrac cd+\dfrac cb}{1 + \dfrac db}

Multiply through everything on the right side by <em>b/d</em> to get

\dfrac{a+c}{b+d} < \dfrac{\dfrac{bc}{d^2}+\dfrac cd}{\dfrac bd+1} = \dfrac{\dfrac cd\left(\dfrac bd+1\right)}{\dfrac bd+1} = \dfrac cd

and so (<em>a</em> + <em>c</em>)/(<em>b</em> + <em>d</em>) < <em>c/d</em>.

For the other side, you can do something similar and divide through everything by <em>d</em> :

\dfrac{a+c}{b+d} = \dfrac{\dfrac ad + \dfrac cd}{\dfrac bd + 1}

and <em>a/b</em> < <em>c/d</em> tells us that

\dfrac{a+c}{b+d} > \dfrac{\dfrac ad + \dfrac ab}{\dfrac bd + 1}

Then

\dfrac{a+c}{b+d} > \dfrac{\dfrac ab + \dfrac{ad}{b^2}}{1 + \dfrac db} = \dfrac{\dfrac ab\left(1+\dfrac db\right)}{1 + \dfrac db} = \dfrac ab

and so (<em>a</em> + <em>c</em>)/(<em>b</em> + <em>d</em>) > <em>a/b</em>.

Then together we get the desired inequality.

5 0
3 years ago
Other questions:
  • Need help with a math question PLEASE HELP
    6·1 answer
  • What is the value of this expression <br><br><br> 3^2*2-4(3-1)
    14·1 answer
  • Express the fraction 11/30 in decimal form
    13·2 answers
  • Help with problem<br> 2·m+3·m²-4·m
    12·2 answers
  • Multiply the following equation
    7·1 answer
  • Pleeeeease helppppppppppppp
    10·1 answer
  • Find the value of X<br> A. 40 degrees <br> B. 50 degrees <br> C. 60 degrees <br> D. 100 degrees
    7·1 answer
  • Divide. 2/7 divided by 1/3
    12·1 answer
  • Point T is on<br> SU ST=20 and TU=8<br> what is SU?
    7·1 answer
  • Please helppp!!!!!! im giving all my points left
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!