V=πr²h
V=(3)(2²)(8)
V=96
V=(πr²h)/3
V=(3)(2²)(3)/3
V=12
V=96+12
V=108
Step-by-step explanation:
<em><u>I </u></em><em><u>thin</u></em><em><u>k</u></em><em><u> </u></em><em><u>mode</u></em><em><u>,</u></em><em><u>range</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>median</u></em><em><u> </u></em><em><u>dpo</u></em><em><u> </u></em><em><u>ako</u></em><em><u> </u></em><em><u>sure</u></em>
Answer:
Local minimum at x = 0.
Step-by-step explanation:
Local minimums occur when g'(x) = 0 and g"(x) > 0.
Local maximums occur when g'(x) = 0 and g"(x) < 0.
Set g'(x) equal to 0 and solve:
0 = 2x (x − 1)² (x + 1)²
x = 0, 1, or -1
Evaluate g"(x) at each point:
g"(0) = 2
g"(1) = 0
g"(-1) = 0
There is a local minimum at x = 0.
Answer:
2
Step-by-step explanation:
because that's the answer