Answer:
a)Amplitude ,A = 2 mm
b)f=95.49 Hz
c)V= 30 m/s ( + x direction )
d) λ = 0.31 m
e)Umax= 1.2 m/s
Explanation:
Given that
![y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=y%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
As we know that standard form of wave equation given as

A= Amplitude
ω=Frequency (rad /s)
t=Time
Φ = Phase difference
![y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=y%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
So from above equation we can say that
Amplitude ,A = 2 mm
Frequency ,ω= 600 rad/s (2πf=ω)
ω= 2πf
f= ω /2π
f= 300/π = 95.49 Hz
K= 20 rad/m
So velocity,V
V= ω /K
V= 600 /20 = 30 m/s ( + x direction )
V = f λ
30 = 95.49 x λ
λ = 0.31 m
We know that speed is the rate of displacement

![U=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=U%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
![U=1200\ cos[(20m^{-1})x-(600s^{-1})t]\ mm/s](https://tex.z-dn.net/?f=U%3D1200%5C%20cos%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D%5C%20mm%2Fs)
The maximum velocity
Umax = 1200 mm/s
Umax= 1.2 m/s
The answer is "D". This is because wind is very abundant on earth...
One of the equations of gravity is this:

Where v = final velocity which is 7m/s
u = initial velocity which is 0 for objects falling from a height
g = acceleration due to gravity and it is approximately 10m/s^2. It's a constant so pretty much remember this number. It's positive since the work being done is caused by gravity (in other words, it's falling down). It can also be negative if the work being down is against gravity (in other words, it's going up)
h = height of object
Substitute for the values and you should have something like this



Latitude, elevation, ocean currents, topography, and prevailing winds. There's probably a few others but these are the most important.
Answer:
Both are aquatic animals and are hunters
Explanation: