-- We're going to be talking about the satellite's speed.
"Velocity" would include its direction at any instant, and
in a circular orbit, that's constantly changing.
-- The mass of the satellite makes no difference.
Since the planet's radius is 3.95 x 10⁵m and the satellite is
orbiting 4.2 x 10⁶m above the surface, the radius of the
orbital path itself is
(3.95 x 10⁵m) + (4.2 x 10⁶m)
= (3.95 x 10⁵m) + (42 x 10⁵m)
= 45.95 x 10⁵ m
The circumference of the orbit is (2 π R) = 91.9 π x 10⁵ m.
The bird completes a revolution every 2.0 hours,
so its speed in orbit is
(91.9 π x 10⁵ m) / 2 hr
= 45.95 π x 10⁵ m/hr x (1 hr / 3,600 sec)
= 0.04 x 10⁵ m/sec
= 4 x 10³ m/sec
(4 kilometers per second)
This is an interesting (read tricky!) variation of Rydberg Eqn calculation.
Rydberg Eqn: 1/λ = R [1/n1^2 - 1/n2^2]
Where λ is the wavelength of the light; 1282.17 nm = 1282.17×10^-9 m
R is the Rydberg constant: R = 1.09737×10^7 m-1
n2 = 5 (emission)
Hence 1/(1282.17 ×10^-9) = 1.09737× 10^7 [1/n1^2 – 1/25^2]
Some rearranging and collecting up terms:
1 = (1282.17 ×10^-9) (1.09737× 10^7)[1/n2 -1/25]
1= 14.07[1/n^2 – 1/25]
1 =14.07/n^2 – (14.07/25)
14.07n^2 = 1 + 0.5628
n = √(14.07/1.5628) = 3
Answer:
Q = - 4312 W = - 4.312 KW
Explanation:
The rate of heat of the concrete slab can be calculated through Fourier's Law of heat conduction. The formula of the Fourier's Law of heat conduction is as follows:
Q = - kA dt/dx
Integrating from one side of the slab to other along the thickness dimension, we get:
Q = - kA(T₂ - T₁)/L
Q = kA(T₁ - T₂)/t
where,
Q = Rate of Heat Loss = ?
k = thermal conductivity = 1.4 W/m.k
A = Surface Area = (11 m)(8 m) = 88 m²
T₁ = Temperature of Bottom Surface = 10°C
T₂ = Temperature of Top Surface = 17° C
t = Thickness of Slab = 0.2 m
Therefore,
Q = (1.4 W/m.k)(88 m²)(10°C - 17°C)/0.2 m
<u>Q = - 4312 W = - 4.312 KW</u>
<u>Here, negative sign shows the loss of heat.</u>
Answer:
T₂ = 20.06 ° C
Explanation:
Given
P = 90 kg, T₁ = 20 ° C, h = 30 m, c = 1.82 kJ / Kg * ° C
Using the formula to determine the final temperature of the water
T₂ = T₁ * P * h / Eₐ * c
The work done of the person to the water
Eₐ = 1000 kg / m³ * 5 m³ * 9.8 m / s²
Eₐ = 49000 N
T₂ = 20 ° C +[ (90 kg * 30m) / (49000 N * 1.82) ]
T₂ = 20.06 ° C