Using conservation of energy and momentum we get m1*v1=(m1+m2)*v2 so rearranging for v2 and plugging the given values in we get:
(200000kg*1.00m/s)/(21000kg)=.952m/s
Answer:
angular acceleration is -0.2063 rad/s²
Explanation:
Given data
mass m = 95.2 kg
radius r = 0.399 m
turning ω = 93 rpm
radial force N = 19.6 N
kinetic coefficient of friction μ = 0.2
to find out
angular acceleration
solution
we know frictional force that is = radial force × kinetic coefficient of friction
frictional force = 19.6 × 0.2
frictional force = 3.92 N
and
we know moment of inertia that is
γ = I ×α = frictional force × r
so
γ = 1/2 mr²α
α = -2f /mr
α = -2(3.92) /95.2 (0.399)
α = - 7.84 / 37.9848 = -0.2063
so angular acceleration is -0.2063 rad/s²
ogckcigxxkgxkgxkgxixogxigxixgxgifkcgo
Answer:
The tangential speed of the tack is 6.988 meters per second.
Explanation:
The tangential speed experimented by the tack (
), measured in meters per second, is equal to the product of the angular speed of the wheel (
), measured in radians per second, and the distance of the tack respect to the rotation axis (
), measured in meters, length that coincides with the radius of the tire. First, we convert the angular speed of the wheel from revolutions per second to radians per second:


Then, the tangential speed of the tack is: (
,
)


The tangential speed of the tack is 6.988 meters per second.