Answer:
0
Step-by-step explanation:
given that we roll a fair die repeatedly until we see the number four appear and then we stop.
the number 4 can appear either in I throw, or II throw or .... indefinitely
So X = the no of throws can be from 1 to infinity
This is a discrete distribution countable.
Sample space= {1,2,.....}
b) Prob ( 4 never appears) = Prob (any other number appears in all throws)
= 
where n is the number of throws
As n tends to infinity, this becomes 0 because 5/6 is less than 1.
Hence this probability is approximately 0
Or definitely 4 will appear atleast once.
The 1:3 ratio means that the distance from A to the point is 1/4 of the distance from A to B.
The difference of y-coordinates is 10-8 = 2. 1/4 of that is 2·1/4 = 1/2, so the point of interest will have y-coordinate 8 + 1/2 = 8 1/2. This apparently corresponds to the first selection:
... (6 1/2, 8 1/2)
11 is the answer to your question.
2×11=22
22+5=27
Answer:
c
Step-by-step explanation: