1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zarrin [17]
3 years ago
14

Can anyone help me??? PLZ….

Mathematics
1 answer:
bezimeni [28]3 years ago
4 0
7. Obtuse
8. Acute
9. No, because it’s the hypotenuse
10. Yes, because that part is not the hypotenuse and it is less than the greatest angle
You might be interested in
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
I will give brainliest <br> Find n. <br> 35n/35 = 700/35
adoni [48]

Answer:

20

Step-by-step explanation:

\frac{35n}{35} =\frac{700}{35} \\

multiply both sides by 35

35*\frac{35n}{35} = 700 * 35\\35n = 700

divide both sides by 35

n = 20

6 0
3 years ago
Read 2 more answers
A rectangle is 18 inches long and 9 inches wide. Find it’s area.
galina1969 [7]

Answer:

162 square inch

Step-by-step explanation:

Area = Length * Width

Area = 18*9=162

4 0
3 years ago
Pete bought 20 sets of crayons as a return gifts of his daughter’s birthday party. He spent a total of $60 on the purchase. Find
artcher [175]

Answer:

$27 for 9 sets ($3 each)

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
What is the value of x in the diagram?
PilotLPTM [1.2K]

Answer:

65

Step-by-step explanation:

They are vertical angles; so angles are congruent

*<em>Vertical angles are always congruent*</em>

<em>Congruent means equal or same.</em>

1) Since they are congruent, you form an equation.

<h2>145 = 2x + 15</h2>

2) Solve by subtracting 15 from both sides.

<h2>145 = 2x + 15</h2><h2>- 15            -15</h2><h2>----------------------</h2><h2>130 = 2x</h2>

3) Solve by dividing 2 from both sides

<h2>130/2 = 2x/2</h2>

4) Simplify

x = 65

7 0
3 years ago
Other questions:
  • Given: 15+6(y−2)=21 Prove: y = 3 Drag and drop the reasons into the boxes to correctly complete the proof. Statement Reason 15+6
    8·1 answer
  • Find the value of x and the value of y. A.x = 15, y = 10 B.x = 20, y = 50 C.x = 50, y = 10 D.x = 50, y = 20
    14·1 answer
  • How do you divide $306 into the ratio of 9:5:3? Can someone give me some advice on how to solve this problem?
    8·1 answer
  • -16.5v − 19.94 = 19.39 − 9.6v
    7·1 answer
  • Please help me someone
    10·1 answer
  • Mikayla caught a value pack of crackers for $6.72. The value pack had 24 individually wrapped crackers packages. Solve 24x = $6.
    14·1 answer
  • The store sells walnuts for $2.95 per pound. Corey bought 2.4 pounds of walnuts. Before tax, how much will the walnuts cost?
    6·2 answers
  • 2) I am a 5 digit number between 70,000 and 80,000 My hundreds digit is greatest single digit odd number. My thousands digit is
    11·1 answer
  • Solve pls i cant do these
    15·1 answer
  • What must happen to make harvesting electricity possible??
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!