From the given figure ,
RECA is a quadrilateral
RC divides it into two parts
From the triangles , ∆REC and ∆RAC
RE = RA (Given)
angle CRE = angle CRA (Given)
RC = RC (Common side)
Therefore, ∆REC is Congruent to ∆RAC
∆REC =~ ∆RAC by SAS Property
⇛CE = CA (Congruent parts in a congruent triangles)
Hence , Proved
<em>Additional</em><em> comment</em><em>:</em><em>-</em>
SAS property:-
"The two sides and included angle of one triangle are equal to the two sides and included angle then the two triangles are Congruent and this property is called SAS Property (Side -Angle-Side)
<u>also</u><u> </u><u>read</u><u> </u><u>similar</u><u> questions</u><u>:</u> Complete this proof. Given: EC AC, DB AC, ∠A = ∠F Prove: ΔMDF ∼ ΔNCA..
brainly.com/question/16250124?referrer
Consider the proof. Given: Segment AB is parallel to line DE. Prove: AD/DC = BE/EC What is the missing statement in Step 5? A.) AC = BC B.) AC/DC = BC/EC C.) AD...
brainly.com/question/11763540?referrer
Answer:
1416
Step-by-step explanation:
Correct me if I'm wrong
Answer: c
Step-by-step explanation:
Answer:
720 ways to arrange
Step-by-step explanation:
Use the factorial of 6 to find this solution. Namely, 6!
This means 6*5*4*3*2*1 which equals 720
It seems like a huge number, right? But think of it like this: For the first option, you have 6 collars. After you fill the first spot with one of the 6, you have 5 left that will fill the second spot. After the first 2 spots are filled and you used 2 of the 6 collars, there are 4 possibilities that can fill the next spot, etc.
Answer:
(a) 0.2061
(b) 0.2514
(c) 0
Step-by-step explanation:
Let <em>X</em> denote the heights of women in the USA.
It is provided that <em>X</em> follows a normal distribution with a mean of 64 inches and a standard deviation of 3 inches.
(a)
Compute the probability that the sample mean is greater than 63 inches as follows:

Thus, the probability that the sample mean is greater than 63 inches is 0.2061.
(b)
Compute the probability that a randomly selected woman is taller than 66 inches as follows:

Thus, the probability that a randomly selected woman is taller than 66 inches is 0.2514.
(c)
Compute the probability that the mean height of a random sample of 100 women is greater than 66 inches as follows:

Thus, the probability that the mean height of a random sample of 100 women is greater than 66 inches is 0.