Answer:
C3H6 + Br2 → C3H6Br2
Explanation:
The reaction in which C3H6Br2 (1,2-Dibromopropane) is created is:
We can see that the only difference between the product (C3H6Br2) and the known reactant (C3H6) of the reaction is two bromine atoms (Br2). Br2 is diatomic bromine - a molecule we get after combining two bromine atoms. This compound is a red-brown liquid at room temperature, which means that that is the liquid described in your question.
Answer:
Field experiments can often have the potential to give scientists opportunities that are not possible in a lab setting.
Explanation:
Having people "act natural" in a lab setting is impossible to truly achieve, as we all know what happens to our mental state and behavior when we are being actively observed. This is also especially helpful when conducting wildlife research, as there are a myriad of different things influencing animal and plant behavior that would be nigh impossible to recreate perfectly in a controlled lab setting.
Field research can have its disadvantages as well, as it is very hard to only have one thing change (make an independent variable) in a wild environment with ever-changing weather, social effects, etc. Also, you, as the researcher, as causing an impact on the very location that you are observing, which can alter your results in unpredictable ways.
The thing to remember is that each type of study has its advantages and disadvantages; if they didn't, then we'd all do the same type of research! You have to weigh your research options and figure out which one works best for your situation :)
Answer:
B is the answer
Explanation:
Because it a molecular mass of one
A second-order extension of the Kohn-Sham total energy in density-functional theory (DFT) with respect to charge density fluctuations serves as the foundation for the density functional based tight binding (DFTB) approach.
What is DFTB method?
- The density functional based tight binding (DFTB) electronic structure method was used to study the clusters of bare TiO2 and TiO2 with linked organic ligands modeling polyorganic composites used as photocatalytic materials.
- The results were compared to those obtained from B3LYP/6-31G(d,p) calculations, semiempirical methods PM6 and PM7, and available experimental data.
- It was discovered that the highly scalable DFTB approach produces outcomes that are nearly on the level of theory B3LYP/6-31G(d,p).
- The trans3d set more accurately reproduces the energies of the composite material production in polycondensation processes, but the corrected version of the tiorg DFTB parameter set (tiorg-smooth) performs better for structural parameter estimations.
- The tiorg-smooth and trans3d settings perform better than the matsci set in some way. Studies of adsorption complexes of bare TiO2 clusters can be conducted using the tiorg-smooth and matsci sets.
Learn more about the Density with the help of the given link:
brainly.com/question/23487480
#SPJ4