Answer is 2KClO3 3O2 + 2KCl
Adding a catalyst as this would speed up the reaction and the rest would slow it down
Answer:
Explanation:
idk why all u guys like trump who do.. hes just a big pain in the a*s.
The pH of a 0.0115 m aqueous formic acid solution is mathematically given as
pH=2.8424
This is further explained below.
<h3>What is the ph of a 0.0115 m aqueous formic acid solution?</h3>
Generally, the equation for the chemical equation is mathematically given as
HCOOH H^+ + HCOO


![&\left[\mathrm{H}^{+}\right]=\mathrm{C \alpha}\\\\&=0.125 \times 0.0115\\\\&=1.4375 \times 10^{-9}\\\\&P=-\log \left[H^{+}\right]\\\\&=-\log \left[1.4375 \times 10^{-3}\right]\\\\&P H=2.8424](https://tex.z-dn.net/?f=%26%5Cleft%5B%5Cmathrm%7BH%7D%5E%7B%2B%7D%5Cright%5D%3D%5Cmathrm%7BC%20%5Calpha%7D%5C%5C%5C%5C%26%3D0.125%20%5Ctimes%200.0115%5C%5C%5C%5C%26%3D1.4375%20%5Ctimes%2010%5E%7B-9%7D%5C%5C%5C%5C%26P%3D-%5Clog%20%5Cleft%5BH%5E%7B%2B%7D%5Cright%5D%5C%5C%5C%5C%26%3D-%5Clog%20%5Cleft%5B1.4375%20%5Ctimes%2010%5E%7B-3%7D%5Cright%5D%5C%5C%5C%5C%26P%20H%3D2.8424)
Read more about chemical equation
brainly.com/question/28294176
#SPJ1
Answer: The hydroboration of an alkene occurs in TWO CONCERTED STEP which places the boron of the borane on the LESS SUBSTITUTED carbon of the double bond. The oxidizing agent then acts as a nucleophile, attacking the electrophilic BORON and resulting in the placement of a hydroxyl group on the attached carbon. Thus, the major product of the hydroboration oxidation reaction DOES NOT follow Markovnikov's rule.
Explanation:
Hydroboration is defined as the process which allows boron to attain the octet structure. This involves a two steps pathway which leads to the production of alcohol.
--> The first step: this involves the initiation of the addittion of borane to the alkene and this proceeds as a concerted reaction because bond breaking and bond formation occurs at the same time.
--> The second step: this involves the addition of boron which DOES NOT follow Markovnikov's rule( that is, Anti Markovnikov addition of Boron). This is so because the boron adds to the less substituted carbon of the alkene, which then places the hydrogen on the more substituted carbon.
Note: The Markovnikov rule in organic chemistry states that in alkene addition reactions, the electron-rich component of the reagent adds to the carbon atom with fewer hydrogen atoms bonded to it, while the electron-deficient component adds to the carbon atom with more hydrogen atoms bonded to it.