let's recall that in a Kite the diagonals meet each other at 90° angles, Check the picture below, so we're looking for the equation of a line that's perpendicular to BD and that passes through (-1 , 3).
keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of BD


so we're really looking for the equation of a line whose slope is -1/3 and passes through point A
![(\stackrel{x_1}{-1}~,~\stackrel{y_1}{3})\qquad \qquad \stackrel{slope}{m}\implies -\cfrac{1}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{3}=\stackrel{m}{-\cfrac{1}{3}}[x-\stackrel{x_1}{(-1)}]\implies y-3=-\cfrac{1}{3}(x+1) \\\\\\ y-3=-\cfrac{1}{3}x-\cfrac{1}{3}\implies y=-\cfrac{1}{3}x-\cfrac{1}{3}+3\implies y=-\cfrac{1}{3}x+\cfrac{8}{3}](https://tex.z-dn.net/?f=%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20%5Cqquad%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20-%5Ccfrac%7B1%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-%5Cstackrel%7By_1%7D%7B3%7D%3D%5Cstackrel%7Bm%7D%7B-%5Ccfrac%7B1%7D%7B3%7D%7D%5Bx-%5Cstackrel%7Bx_1%7D%7B%28-1%29%7D%5D%5Cimplies%20y-3%3D-%5Ccfrac%7B1%7D%7B3%7D%28x%2B1%29%20%5C%5C%5C%5C%5C%5C%20y-3%3D-%5Ccfrac%7B1%7D%7B3%7Dx-%5Ccfrac%7B1%7D%7B3%7D%5Cimplies%20y%3D-%5Ccfrac%7B1%7D%7B3%7Dx-%5Ccfrac%7B1%7D%7B3%7D%2B3%5Cimplies%20y%3D-%5Ccfrac%7B1%7D%7B3%7Dx%2B%5Ccfrac%7B8%7D%7B3%7D)
Answer= 2w2-9w-5
Hope this helps
Answer:
14
Step-by-step explanation:
First, we have to get the breadth value.
By the pythagoras theoreom,
Diagonal²=length² + breadth²
breadth = √( Diagonal²- length²)
breadth = √( 5² - 4²)
breadth = √9
breadth= 3
Perimeter of a rectangle = 2x ( length + breadth)
= 2 x ( 4 + 3)
= 2 x 7
= 14
Answer:
height= 4.8cm
Step-by-step explanation:
volume= length×width× height given the volume and length and width, 288=12×5×h
288=60h
divide both sides by 60
h=4.8cm