Step-by-step explanation:

I'd go with: D. clockwise 90 rotation; reduction
(Hope I helped :D
Answer:
fractions form- x= 5/6
decimal form- x=0.83
Step-by-step explanation:
Answer:
The minimum level for which the battery pack will be classified as highly sought-after class is 2.42 hours
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the minimum level for which the battery pack will be classified as highly sought-after class
At least the 100-10 = 90th percentile, which is the value of X when Z has a pvalue of 0.9. So it is X when Z = 1.28.




The minimum level for which the battery pack will be classified as highly sought-after class is 2.42 hours
Your answer is f(y) > 0
A is your answer