Answer:
The surface-to-volume ratio of a C-60 fullerene is 3:77.
Explanation:
Surface area of sphere = 
Volume of the sphere = 
where : r = radius of the sphere
Radius of the C-60 fullerene sphere = r = 77 pm
Surface area of the C-60 fullerene =
...[1]
Volume area of the C-60 fullerene =
..[2]
Dividing [1] by [2]:


The surface-to-volume ratio of a C-60 fullerene is 3:77.
Answer:
Mole fraction of alcohols in liquid phase
.
Mole fraction of alcohols in vapor phase
.
Explanation:
The total vapor pressure of the solution = p =38.6 Torr
Partial vapor pressure of the n-propyl alcohol =
Partial vapor pressure of the isopropyl alcohol =
(Raoult's Law)




is mole fraction in liquid phase.
Mole fraction of components in vapor phase 
(Dalton's law of partial pressure)




Mole fraction of alcohols in vapor phase 
If the liquid is at or above its flash point, the flame spread rate is fast, and the entire pool is engulfed within seconds. ... As the liquid temperature decreases, flame radiation must both heat the liquid to the flash point temperature and supply the heat of vaporization.
Answer:
76
Explanation:
Alpha decay is one of the most basic forms of radioactive decay. It has an atomic mass of 4 and a proton number of two.
Undergoing an alpha decay will decrease the atomic mass by four and the atomic number by two.
In this particular question, we are particular about the atomic number. The atom has an atomic number of 78. So taking 2 off this gives 76
<h3>
Answer:</h3>
19.3 g/cm³
<h3>
Explanation:</h3>
Density of a substance refers to the mass of the substance per unit volume.
Therefore, Density = Mass ÷ Volume
In this case, we are given;
Mass of the gold bar = 193.0 g
Dimensions of the Gold bar = 5.00 mm by 10.0 cm by 2.0 cm
We are required to get the density of the gold bar
Step 1: Volume of the gold bar
Volume is given by, Length × width × height
Volume = 0.50 cm × 10.0 cm × 2.0 cm
= 10 cm³
Step 2: Density of the gold bar
Density = Mass ÷ volume
Density of the gold bar = 193.0 g ÷ 10 cm³
= 19.3 g/cm³
Thus, the density of the gold bar is 19.3 g/cm³