The amount of kinetic energy that an object has depends on its mass or how heavy it is and how fast it is moving, or velocity
The overall reaction is given by:

The fast step reaction is given as:

The slow step reaction is given as:
(slow step
)
Now, the expression for the rate of reaction of fast reaction is:
![r_{1}=k_{1}[NO][Br_{2}]-k_{-1}[NOBr_{2}]](https://tex.z-dn.net/?f=r_%7B1%7D%3Dk_%7B1%7D%5BNO%5D%5BBr_%7B2%7D%5D-k_%7B-1%7D%5BNOBr_%7B2%7D%5D)
The expression for the rate of reaction of slow reaction is:
Slow step is the rate determining step. Thus, the overall rate of formation is the rate of formation of slow reaction as
takes place in this reaction.
The expression of rate of formation is:

=
(1)
Now, consider that the fast step is always is in equilibrium. Therefore, 
![k_{1}[NO][Br_{2}]= k_{-1}[NOBr_{2}]](https://tex.z-dn.net/?f=k_%7B1%7D%5BNO%5D%5BBr_%7B2%7D%5D%3D%20k_%7B-1%7D%5BNOBr_%7B2%7D%5D)
![[NOBr_{2}] = \frac{k_{1}}{k_{-1}}[NO][Br_{2}]](https://tex.z-dn.net/?f=%5BNOBr_%7B2%7D%5D%20%3D%20%5Cfrac%7Bk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5BBr_%7B2%7D%5D)
Substitute the value of
in equation (1), we get:
![\frac{d(NOBr)}{dt}=k_{2}[NOBr_{2}][NO]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%28NOBr%29%7D%7Bdt%7D%3Dk_%7B2%7D%5BNOBr_%7B2%7D%5D%5BNO%5D)
=![k_{2} \frac{k_{1}}{k_{-1}}[NO][Br_{2}][NO]](https://tex.z-dn.net/?f=k_%7B2%7D%20%5Cfrac%7Bk_%7B1%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5BBr_%7B2%7D%5D%5BNO%5D)
= ![\frac{k_{1}k_{2}}{k_{-1}}[NO]^{2}[Br_{2}]](https://tex.z-dn.net/?f=%5Cfrac%7Bk_%7B1%7Dk_%7B2%7D%7D%7Bk_%7B-1%7D%7D%5BNO%5D%5E%7B2%7D%5BBr_%7B2%7D%5D)
Thus, rate law of formation of
in terms of reactants is given by
.
The characteristic of the Bohr model that would best support his observation is this assumption: "The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has." The discrete, bright, colored lines might represent the electrons and its distance from the nucleus. The lights are caused by the energy it has.
Since we know that one mole of any gas at STP is equal to 22.4 L we can multiply 135L by the following conversion: 1 mole/22.4L. When you set up the problem it looks like this…: (135L)x 1 mole/22.4L =6.03 moles of oxygen gas The liters cancel out and you are left with moles as your units.
So your answer is then 3.058
Answer:- Density is 10.5 grams per mL and the substance is Silver(Ag).
Solution:- Mass of jewelry is given as 132.6 g. Initial volume of water in the graduated cylinder is 48.6 mL and the volume becomes 61.2 mL when this jewelry is submerged in the cylinder.
So, the volume of the jewelry = 61.2 mL - 48.6mL = 12.6 mL
We know that, 
Let's plug in the values in the above formula to calculate the density:


So, the density of the jewelry is
.
The substance from which the jewelry is made could easily be identified by comparing the calculated density with the density values given for different substances in the density table.
Looking at the density table, 10.5 grams per mL is the density for silver. So, the jewelry is made up from Silver.