Answer: radon (atomic mass 222 amu
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
atomic mass of krypton= 83.8 amu
atomic mass of argon= 39.95 amu
atomic mass of xenon = 131.3 amu
atomic mass of radon= 222 amu
Thus as atomic mass of radon is highest, its rate of diffusion is slowest.
Answer: Strictly a laboratory analysis and can only be done using the data obtained during analysis
Explanation:
To find a solution to this problem, you need to use the data collected during the lab work. A guide could be finding the possible forms of hydrated copper chlorides in reference books. Since it's also a lab work, you can definitely compare your data with lab mates.
The formula CuxCly.zH₂O and its name chloride hydrate already gives you an idea of the possibilities of the value of the integers, hence you can take a good guess for the identity of the unknown salt and calculate the theoretical formular weight for it. From the that you can proceed to also find the mass of water and copper from your lab analysis.
They are called reactants.
Answer:
Calcium is more reactive than magnesium because calcium atom is larger than magnesium atom and it has one more energy level. ... Thus Ca is more reactive than Mg.
Answer:
The answer to your question is: 101.2 g of CO2
Explanation:
C = 27.6 g
O₂ = 86.5 g remained 12.9 g
O₂ that reacted = 86.5 - 12.9 = 73.6 g
C + O₂ ⇒ CO₂ The equation is balanced
27.6 73.6 ?
MW 12 32 44
Rule of three
12 g of C------------------ 44 g CO2
27.6 g C ------------------ x
x = 27.6(44)/12 = 101.2 g of CO2
32 g of O2 --------------- 44 g of CO2
73.6 g of O2 ------------ x
x = 73.6(44)/32 = 101.2 g of CO2