To make something electrical you need electricity and the wires will turn a magnet into an electromagnet.
or for a short answer: <span>1) soft iron core 2) coil of insulated wire 3)source of electricity</span>
Answer:
The answer is 1.87nm/s.
Explanation:
The
water loss must be replaced by
of sap. 110g of sap corresponds to a volume of

thus rate of sap replacement is

The volume of sap in the vessel of length
is
,
where
is the cross sectional area of the vessel.
For 2000 such vessels, the volume is

taking the derivative of both sides we get:

on the left-hand-side
is the velocity
of the sap, and on right-hand-side
; therefore,

and since the cross-sectional area is
;
therefore,

solving for
we get:


which is the upward speed of the sap in each vessel.
Answer:
The ball will fall back and land to Elle's hands.
Explanation:
The bus move in a straight line with constant velocity means that there is no change of direction and no acceleration. Inertia can change the direction of the ball and acceleration can change its velocity. Since these two factors is not present in this scenario, the ball only has vertical movement. Thus the ball will land where it was thrown, in Elle's hands.
<u>Answer:</u>
<em>1. A NaCl solution with a concentration of 50g/100mL of water at 40°C:</em> The NaCl solution with a given concentration is saturated at this temperature .As the temperature increases the solution will more dissolves.
<em>2. A sugar solution with a concentration of 200g/100mL of water at 40°C: </em>The sugar solution with a given concentration is saturated at this temperature. As the temperature increases the solution will more dissolves.
<em>3. A sugar solution with a concentration of 240g/100mL of water at 40°C:</em> The sugar solution with a given concentration is saturated at given temperature.
Explanation:
It is given that,
Diameter of loop, d = 1.4 cm
Radius of loop, r = 0.7 cm = 0.007 m
Magnetic field, 
(A) Magnetic field of a current loop is given by :

I is the current in the loop


I = 27.85 A
(B) Magnetic field at a distance r from a wire is given by :



r = 0.00222 m

Hence, this is the required solution.