The acceleration of gravity on Jupiter is listed as <em>24.79 m/s²</em> .
That's roughly 2.53 times its value on Earth. So if you weigh, let's say,
130 pounds on Earth, then you would weigh about 328 pounds on Jupiter.
The lowest surface temperature in the solar system was recorded on Uranus (-224 degrees Celsius). The temperature of a planet does not only depend on the amount of solar radiation that it receives but also on the amount of heat that it gives off. Because of Uranus' orientation it absorbs little radiation which makes it colder than Neptune although Neptune is further away from the Sun. <span />
<span>R = rate of flow = 0.370 L/s
H = height = 2.9 m
T= time = 3.9 s
V = velocity of water when it hits the bucket = sqrt(2gh) = sqrt(2 x 9.8 x 2.9) =7.539 m/s2
G value = 9.8 m/s2
Wb = weight of bucket = 0.690 kg x 9.8 m/s2 = 6.762 N
Wa = weight of accumulated water after 3.9 s
Fi = force of impact of water on the bucket
S = reading on the scale = Wa + Wb + Fi
mass of water accumulated after 3.9 s = R x T = 0.370 x 3.9 = 1.443 L = 1.443 kg
Therefore, Wa = 1.443 x 9.8 = 14.1414 N
Fi = rate of change of momentum at the impact point = R x V (because R = dm/dt)
= 0.37 x 7.539 = 2.78943 N
S = 14.1414 + 6.762 + 2.78943 = 23.692 N</span>
Answer:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)
Explanation:
The general equation to calculate the center of mass is:

Any differential of mass can be calculated as:
Where "a" is the radius of the circle and λ is the linear density of the wire.
The linear density is given by:

So, the differential of mass is:


Now we proceed to calculate X and Y coordinates of the center of mass separately:


Solving both integrals, we get:


Therefore, the position of the center of mass is:
![r_{cm}=[12.73,12.73]cm](https://tex.z-dn.net/?f=r_%7Bcm%7D%3D%5B12.73%2C12.73%5Dcm)