1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semmy [17]
2 years ago
9

Una rueda gira con una frecuencia de 530 rpm. Determina la velocidad angular, el periodo y la frecuencia.

Physics
1 answer:
Vlad1618 [11]2 years ago
6 0

Answer:

donde esta la bibliotekaaa

Explanation:

dfghj

You might be interested in
A block of ice with mass 2.00 kg slides 0.750 m down an inclined plane that slopes downward at an angle of 36.9 degrees below th
zhannawk [14.2K]

Answer: V_{f}=2.96m/s    

Firstly we have to draw the Free Body Diagram (FBD) as shown in the figure attached.

Where the weight w of the block has an x-component and y-component:

w_{x}=wsin(\theta)    (1)

w_{y}=wcos(\theta)    (2)

As well as the Normal Force N:

N_{x}=Nsin(\theta)    (3)

N_{y}=Ncos(\theta)    (4)

In addition, we know N=w, then \sum F_{y}=0

In the X-component:

\sum F_{x}=m.a

m.a=w_{x}    (5)

Substituting (1) in (5):

wsin(\theta)=m.a    (6)

In addition, we know w=m.g, where m is the mass of the block and g the gravity acceleration, which is equal to 9.8m/{s}^{2}  

So:

m.g.sin(\theta)=m.a   (7)

a=g.sin(\theta)    (8)

a=5.88m/{s}^{2}    (9)   >>>>This is the acceleration of the block

On the other hand, we have the following equation that expresses a <u>relation between</u> the distance d with the acceleration a and time t:

d=\frac{1}{2}a{t}^{2}   (10)

We already know the value of  d and calculated a, we have to find t:

t=\sqrt{\frac{2d}{a}}   (11)

t=\sqrt{\frac{2(0.75m)}{5.88m/{s}^{2}}}   (12)

t=0.50s   (13) >>>This is the time it takes to the block to go from the initial velocity V_{o} to its final velocity V_{f}

If the acceleration is the variation of the velocity in time, we can use the following equation to find V_{f}:

V_{f}-V_{o}=a.t   (13)

If V_{o}=0

V_{f}=a.t   (14)

V_{f}=(5.88m/{s}^{2})(0.50s)   (15)

Finally we get the value of the Final Velocity of the block:

V_{f}=2.96m/s    

6 0
3 years ago
The device is a burner from an electric stove. It is used to transfer heat to a pot by A. Conduction B. Convection C. Radiation
Irina-Kira [14]

I’m pretty positive that it’s A. Conduction. Just refer to the definition of it.

3 0
3 years ago
Read 2 more answers
Solve the following system of equations by using either substitution or elimination.
strojnjashka [21]
I believe that the answer to the question provided above are the following;

x = 29.8410

y = 16.6794

z = -1.2642
Hope my answer would be a great help for you.    If you have more questions feel free to ask here at Brainly.
5 0
3 years ago
A hot-water stream at 80 ℃ enters a mixing chamber with a mass flow rate of 0.5 kg/s where it is mixed with a stream of cold wat
rewona [7]

Answer:

\dot{m_{2}}=0.865 kg/s

Explanation:

\dot{m_1}= 0.5kg/s

from steam tables , at 250 kPa, and at

T₁ = 80⁰C ⇒ h₁ = 335.02 kJ/kg

T₂ = 20⁰C⇒ h₂ = 83.915 kJ/kg

T₃ = 42⁰C ⇒ h₃ = 175.90 kJ/kg

we know

\dot{m_{in}}=\dot{m_{out}}

\dot{m_{1}}+\dot{m_{2}}=\dot{m_{3}}

according to energy balance equation

\dot{m_{in}}h_{in}=\dot{m_{out}}h_{out}

\dot{m_{1}}h_{1}+\dot{m_{2}}h_{2}=\dot{m_{3}}h_{3}

\dot{m_{1}}h_{1}+\dot{m_{2}}h_{2}=(\dot{m_{1}}+\dot{m_{2}})h_{3}\\(0.5\times 335.02)+(\dot{m_{2}}\times 83.915)=(0.5+\dot{m_{2}})175.90\\\dot{m_{2}}=0.865 kg/s

4 0
3 years ago
Can anyone solve these for my by using unit vectors? Can you also please show your work
Oxana [17]

4. The Coyote has an initial position vector of \vec r_0=(15.5\,\mathrm m)\,\vec\jmath.

4a. The Coyote has an initial velocity vector of \vec v_0=\left(3.5\,\frac{\mathrm m}{\mathrm s}\right)\,\vec\imath. His position at time t is given by the vector

\vec r=\vec r_0+\vec v_0t+\dfrac12\vec at^2

where \vec a is the Coyote's acceleration vector at time t. He experiences acceleration only in the downward direction because of gravity, and in particular \vec a=-g\,\vec\jmath where g=9.80\,\frac{\mathrm m}{\mathrm s^2}. Splitting up the position vector into components, we have \vec r=r_x\,\vec\imath+r_y\,\vec\jmath with

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)t

r_y=15.5\,\mathrm m-\dfrac g2t^2

The Coyote hits the ground when r_y=0:

15.5\,\mathrm m-\dfrac g2t^2=0\implies t=1.8\,\mathrm s

4b. Here we evaluate r_x at the time found in (4a).

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)(1.8\,\mathrm s)=6.3\,\mathrm m

5. The shell has initial position vector \vec r_0=(1.52\,\mathrm m)\,\vec\jmath, and we're told that after some time the bullet (now separated from the shell) has a position of \vec r=(3500\,\mathrm m)\,\vec\imath.

5a. The vertical component of the shell's position vector is

r_y=1.52\,\mathrm m-\dfrac g2t^2

We find the shell hits the ground at

1.52\,\mathrm m-\dfrac g2t^2=0\implies t=0.56\,\mathrm s

5b. The horizontal component of the bullet's position vector is

r_x=v_0t

where v_0 is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for v_0:

3500\,\mathrm m=v_0(0.56\,\mathrm s)\implies v_0=6300\,\dfrac{\mathrm m}{\mathrm s}

5 0
3 years ago
Other questions:
  • A forensic scientist receives an unknown liquid. Upon close observation, it appears there may be small objects floating in the l
    9·1 answer
  • 3. A force is exerted on a positively-charged particle that moves the particle in the direction opposite to that of an electric
    7·1 answer
  • Please check my answers: The voltage across a 10-ohm resistor carrying 3 amps must be? I got 30 volts-v=?, I=3 amps, R= 16 ohm.
    9·1 answer
  • A hot-air balloon and its basket are accelerating upward at 0.265 m/s2, propelled by a net upward force of 688 N. A rope of negl
    13·1 answer
  • An oxygen atom picks up two additional, free floating electrons. Is the charge of the newly formed oxygen ion positive, negative
    5·2 answers
  • The visible light portion of the electromagnetic spectrum is often subdivided into the colors of red, orange, yellow, green, blu
    10·1 answer
  • The "escape velocity" from Earth (the speed required to escape Earth's gravity) is 2.5 × 104 miles per hour. What is this speed
    15·1 answer
  • Please help. I will give brainliest to first good answer
    10·2 answers
  • PLEASE HELP ME WITH THIISSSSS UGGHHH
    10·1 answer
  • Which of these actions will increase friction? Select three options. Scratching a surface to make it rougher polishing a surface
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!