Efficiency = useful energy out / total energy in x 100
= 100/400 x 100
=0.25 x 100
= 25%
25%
1) First of all, we need to find the distance between the two charges. Their distance on the xy plane is

substituting the coordinates of the two charges, we get

2) Then, we can calculate the electrostatic force between the two charges

and

, which is given by

where

is the Coulomb's constant.
Substituting numbers, we get

and the negative sign means the force between the two charges is attractive, because the two charges have opposite sign.
Answer:
the distance between adjacent fringes is increased by a factor o 2
Explanation:
To find how the distance between fringes is modified you can use the following formula for the calculation of the distance between fringes:

D: distance to the screen
d: distance between slits
λ: wavelength of the light
if d is decreased by a factor of 2, that is d'=1/2d, you have:

hence, the distance between adjacent fringes is increased by a factor o 2
I think the correct answer from the choices listed above is option A. The rent is an<span> example of a monthly fixed cost for a sandwich shop. It is a fixed cost since you are required to pay for it per month. Hope this answers the question. Have a nice day.</span>
Wow ! I understand your shock. I shook and vibrated a little
when I looked at this one too.
The reason for our shock is all the extra junk in the question,
put there just to shock and distract us.
"Neutron star", "5.5 solar masses", "condensed burned-out star".
That's all very picturesque, and it excites cosmic fantasies in
out brains when we read it, but it's just malicious decoration.
It only gets in the way, and doesn't help a bit.
The real question is:
What is the acceleration of gravity 2000 m from
the center of a mass of 1.1 x 10³¹ kg ?
Acceleration of gravity is
G · M / R²
= (6.67 x 10⁻¹¹ N·m²/kg²) · (1.1 x 10³¹ kg) / (2000 m)²
= (6.67 x 10⁻¹¹ · 1.1 x 10³¹ / 4 x 10⁶) (N) · m² · kg / kg² · m²
= 1.83 x 10¹⁴ (kg · m / s²) · m² · kg / kg² · m²
= 1.83 x 10¹⁴ m / s²
That's about 1.87 x 10¹³ times the acceleration of gravity on
Earth's surface.
In other words, if I were standing on the surface of that neutron star,
I would weigh 1.82 x 10¹² tons, give or take.