Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>
Answer:
Yes. You are correct. Great job!
Explanation:
Answer:
The answer is D.
Explanation:
One explanation I can give you is that generally waves travel faster through denser medium because the particles are tightly packed together and so they can transfer energy faster. But to verify the answer, I used Process of Elimination because the other 3 answers are not true. Choice A is entirely true, wave speed depends on the medium it is travelling through, so there is no way choice A is correct. Choice B is wrong because for example if we take light(an EM wave), it travels at a constant speed of 3.0x10^8 m/s in a vacuum and in open space. So, that proves that air or vacuum do not affect the speed of the wave in another medium. Choice C is related to Choice B, we just proved the speed of light is constant everywhere whereas choice C says that in a vacuum the speed is halved. Good luck in your Physics class and I hope for your best!
Answer:
<h2>50
°</h2>
Explanation:
Angle of rotation of the flat polished surface
= 15°
angle of incidence i = 20°
Since the polished surface is turned at an angle of 15°, the angle of reflection
r = 2
(Note that the angle of rotation only have effect of the angle of reflection)
r = 2*15 = 30°
The angle between the reflected ray and the incident ray will be equal to the sum of the angle of incidence and the angle of reflection i.e i+r
The angle between the reflected ray and the incident ray = 20°+ 30° = 50°
The airtime is 9.8
the velocity is 0