P = density × gravity acceleration × height
P = 1200 × 9.81 × 15/100
P = 1765.8
If the question is true or false then the answer is true
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:

- radius of the hill:

Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car

(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,

, so we can write:

(1)
By rearranging the equation and substituting the numbers, we find N:

(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:

(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:

from which we find
Answer:
(a) 62.5 m
(b) 7.14 s
Explanation:
initial speed, u = 35 m/s
g = 9.8 m/s^2
(a) Let the rocket raises upto height h and at maximum height the speed is zero.
Use third equation of motion


h = 62.5 m
Thus, the rocket goes upto a height of 62.5 m.
(b) Let the rocket takes time t to reach to maximum height.
By use of first equation of motion
v = u + at
0 = 35 - 9.8 t
t = 3.57 s
The total time spent by the rocket in air = 2 t = 2 x 3.57 = 7.14 second.