Answer:
Answer is explained in the explanation section below.
Explanation:
This question is very basic and easy. The answer to this question is:
Answer: If both batteries are connected we would get less amount of charge as compared to connected a single battery.
Reasoning:
If both batteries are connected in a manner of positive terminal to positive terminal and negative terminal to negative terminal then a capacitor is added to charge it from the batteries then, total electromotive force (emf) would decrease.
As a result, the capacitor added would get less amount of charge stored. But capacitor added will get more amount of charge stored when a single battery is connected.
The voltage from one side of the battery all the way around to the other side of the battery is 12v .
If 4 of those volts show up across the circle-thing, then the rest of the 12v ... 8v ... Must show up across the set of parallel rectangles.
To get that answer, I subtracted the 4 from the 12.
Just like it says in choice-C.
Answer:
The electron's speed is 34007.35 m/s
Explanation:
It is given that,
Magnetic field, B = 0.34 T
Magnetic force on the electron, 
The electron follows a helical path. We have to find the speed of an electron. The formula for magnetic force is given by :

q = charge on an electron, 
v = velocity of an electron


v = 34007.35 m/s
Hence, this is the required solution.
Answer:
k = 9.6 x 10^5 N/m or 9.6 kN/m
Explanation:
First, we need to use the expression to calculate the spring constant which is:
w² = k/m
Solving for k:
k = w²*m
To get the angular velocity:
w = 2πf
The problem is giving the linear velocity of the car which is 5.7 m/s. With this we can calculate the frequency of the car:
f = V/x
f = 5.7 / 4.9 = 1.16 Hz
Now the angular velocity:
w = 2π*1.16
w = 7.29 rad/s
Finally, solving for k:
k = (7.29)² * 1800
k = 95,659.38 N/m
In two significant figures it'll ve 9.6 kN/m