<em>Question:</em>
<em>Triangles PQR and RST are similar right triangles. Which proportion can be used to show that the slope of PR is equal to the slope of RT?</em>
Answer:

Step-by-step explanation:
See attachment for complete question
From the attachment, we have that:





First, we need to calculate the slope (m) of PQR
Here, we consider P and R

Where


becomes
--------- (1)
Next, we calculate the slope (m) of RST
Here, we consider R and T

Where


becomes
---------- (2)
Next, we equate (1) and (2)

<em>From the list of given options (see attachment), option A answers the question</em>
Answer:
a
Step-by-step explanation:
just multiply
please do the brainiest thing
Answer:
(ab - 6)(2ab + 5)
Step-by-step explanation:
Assuming you require the expression factorised.
2a²b² - 7ab - 30
Consider the factors of the product of the coefficient of the a²b² term and the constant term which sum to give the coefficient of the ab- term
product = 2 × - 30 = - 60 and sum = - 7
The factors are - 12 and + 5
Use these factors to split the ab- term
= 2a²b² - 12ab + 5ab - 30 ( factor the first/second and third/fourth terms )
= 2ab(ab - 6) + 5(ab - 6) ← factor out (ab - 6) from each term
= (ab - 6)(2ab + 5) ← in factored form
Answer:
c
Step-by-step explanation:
There are three steps:<span>Rearrange the equation so "y" is on the left and everything else on the right.Plot the "y=" line (make it a solid line for y≤ or y≥, and a dashed line for y< or y>)<span>Shade above the line for a "greater than" (y> or y≥) or below the line for a "less than" (y< or y≤).</span></span>