The percentage by mass of oxygen in the compound
find the total mass=( 1.900+ 0250 +0.850) = 3
the percentage mass mass of oxgyen/total mass x100
that is (0.850/3) x100=28.33%
A molecular covalent substance (such as co2) has a low melting point because the covalent bonds that hold the molecules together are weak and do not require much energy to break:- False.
What are covalent bonds ?
An electron transfer that leads to the formation of electron pairs between atoms is known as a covalent bond. When atoms share electrons, a stable balance of the repulsive and attractive forces among them is known as covalent bonding. These electron pairs are also known as bonds or shared pairs.
It is a molecular compound, which is a mixture of at least two atoms—the smallest building blocks of matter—joined by a covalent bond. These atoms are joined by a covalent bond, which is formed when electrons are shared.
Learn more about covalent bond here:-
brainly.com/question/19382448
#SPJ4
I THINK 18 OR 21 I AM SORRY IF I AM WRONG BRO
Answer:
3.33 M
Explanation:
It seems your question is incomplete, however, that same fragment has been found somewhere else in the web:
" <em>A chemist prepares a solution of silver nitrate (AgNO3) by measuring out 85.g of silver nitrate into a 150.mL volumetric flask and filling the flask to the mark with water.</em>
<em>Calculate the concentration in mol/L of the chemist's silver nitrate solution. Be sure your answer has the correct number of significant digits.</em> "
In this case, first we <u>calculate the moles of AgNO₃</u>, using its molecular weight:
- 85.0 g AgNO₃ ÷ 169.87 g/mol = 0.500 mol AgNO₃
Then we<u> convert the 150 mL of the volumetric flask into L</u>:
Finally we <u>divide the moles by the volume</u>:
- 0.500 mol AgNO₃ / 0.150 L = 3.33 M
Answer: Option (d) is the correct answer.
Explanation:
Steps involved for the given reaction will be as follows.
Step 1:
(fast)
Rate expression for step 1 is as follows.
Rate = k ![[NO]^{2}](https://tex.z-dn.net/?f=%5BNO%5D%5E%7B2%7D)
Step 2: 
This step 2 is a slow step. Hence, it is a rate determining step.
Step 3.
(fast)
Here,
is intermediate in nature.
All the steps are bimolecular and it is a second order reaction. Also, there is no catalyst present in this reaction.
Thus, we can conclude that the statement step 1 is the rate determining step, concerning this mechanism is not directly supported by the information provided.