Answer:
Distance between the two points
AB = √52 = 7.2111
Step-by-step explanation:
<u><em>Explanation:-</em></u>
Given points are (-1,-2) and (5,2)
Distance formula



= √36+16
=√52
= 7.2111
<u><em>Final answer:-</em></u>
Distance between the two points
AB = √52 = 7.2111
4x-1=-2(x+1)
Distribute
4x-1=-2x-2
Move variable to left and change signs
4x+2x=-2+1
Combine like terms
6x=-1
Divide both sides by 6
X=-1/6
- - - - - - -- - - - - - - - - - -- - - - - - - - - - - - - - --

Solve 3x+4=28

First, subtract 4 on both sides:-


Divide by 3 on both sides:-

<h3>Good luck.</h3>
- - - - -- - -- - - - - - - - - - - - - - -- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
Answer: yes
Step-by-step explanation: Because he had a lower number to begin with and they both spent the same amount of money
Answer: Choice C

============================================================
Explanation:
The graph is shown below. The base of the 3D solid is the blue region. It spans from x = 0 to x = 1. It's also above the x axis, and below the curve 
Think of the blue region as the floor of this weirdly shaped 3D room.
We're told that the cross sections are perpendicular to the x axis and each cross section is a square. The side length of each square is
where 0 < x < 1
Let's compute the area of each general cross section.

We'll be integrating infinitely many of these infinitely thin square slabs to find the volume of the 3D shape. Think of it like stacking concrete blocks together, except the blocks are side by side (instead of on top of each other). Or you can think of it like a row of square books of varying sizes. The books are very very thin.
This is what we want to compute

Apply a u-substitution
u = -2x
du/dx = -2
du = -2dx
dx = du/(-2)
dx = -0.5du
Also, don't forget to change the limits of integration
- If x = 0, then u = -2x = -2(0) = 0
- If x = 1, then u = -2x = -2(1) = -2
This means,

I used the rule that
which says swapping the limits of integration will have us swap the sign out front.
--------
Furthermore,
![\displaystyle 0.5\int_{-2}^{0}e^{u}du = \frac{1}{2}\left[e^u+C\right]_{-2}^{0}\\\\\\= \frac{1}{2}\left[(e^0+C)-(e^{-2}+C)\right]\\\\\\= \frac{1}{2}\left[1 - \frac{1}{e^2}\right]](https://tex.z-dn.net/?f=%5Cdisplaystyle%200.5%5Cint_%7B-2%7D%5E%7B0%7De%5E%7Bu%7Ddu%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5Be%5Eu%2BC%5Cright%5D_%7B-2%7D%5E%7B0%7D%5C%5C%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%28e%5E0%2BC%29-%28e%5E%7B-2%7D%2BC%29%5Cright%5D%5C%5C%5C%5C%5C%5C%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B1%20-%20%5Cfrac%7B1%7D%7Be%5E2%7D%5Cright%5D)
In short,
![\displaystyle \int_{0}^{1}e^{-2x}dx = \frac{1}{2}\left[1 - \frac{1}{e^2}\right]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_%7B0%7D%5E%7B1%7De%5E%7B-2x%7Ddx%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B1%20-%20%5Cfrac%7B1%7D%7Be%5E2%7D%5Cright%5D)
This points us to choice C as the final answer.