The correct answer is Metals.
Generally, the specific heat of metals is low. Very high specific heat exists in water.A physical feature of matter known as heat capacity or thermal capacity is the quantity of heat that must be applied to an object in order to cause a unit change in temperature. Heat capacity is measured in joules per kelvin (J/K), the SI unit. A broad property is heat capacity. Use the following equation to determine heat capacity: heat capacity = E / T, where E is the quantity of delivered heat energy and T is the change in temperature. The formula would be as follows, for instance, if it takes 2,000 Joules of energy to raise a block's temperature by 5 degrees Celsius: 2,000 Joules per °C is the heat capacity.
Learn more about heat capacity here :-
brainly.com/question/13499849
#SPJ4
Answer:
There are four main types of Quantitative research: Descriptive, Correlational, Causal-Comparative/Quasi-Experimental, and Experimental Research. attempts to establish cause- effect relationships among the variables. These types of design are very similar to true experiments, but with some key differences.
Explanation:
Quantitative research is defined as a systematic investigation of phenomena by gathering quantifiable data and performing statistical, mathematical, or computational techniques.
<h3>I hope it will help you</h3>
<h3><em>please</em><em> make</em><em> me</em><em> brainlest</em></h3>
<h2>THANK U</h2>
Answer:
The answer to your question is below
Explanation:
Data
light speed = 300 000 km/s
a) Express it in scientific notation
to do it, we just move the decimal point 5 places to the left
300 000 = 3.0 x 10 ⁵ km/s
b) Convert this value to meters per hour
(300 000 km/s)(1000 m/1 km)(3600 s/1 h) = 300000x1000x3600 / 1x1x1
= 1.08 x 10¹² m/h
c) What distance in centimeters does light travel in 1 s?
data
v = 300 000 km/s
d = ?
t = 1 s
formula v = d/t we clear distance d = vxt
d = 300000 x 1 = 300000 km
d = 300000000 m = 30000000000 cm
We don't know. A black hole is a star that has collapsed into its own gravity. The gravity in fact, is so strong that even light cannot get through it. That's why it looks black to us.