1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kap26 [50]
2 years ago
12

Look at the graph below. Is it a function or not a function? Explain your reasoning.​

Mathematics
1 answer:
navik [9.2K]2 years ago
6 0

Answer:

not a function because it dont cross the axis

You might be interested in
Valeria's office recycled a total of 44 kilograms of paper over 4 weeks. How many weeks will it take Valeria's office to recycle
diamong [38]
The answer would be 6 weeks.

First, you do 44 divided by 4 to get 11 kg per week. Now you divide 66 by 11 to get 6 weeks.
8 0
2 years ago
If Amanda walks at an average speed of 2.72 miles per hour how long will it take her to walk 6.8 miles
defon
Two and a half hours
8 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Algebra 1 Question Brainliest given
agasfer [191]
D hope this helps :) good luck
4 0
3 years ago
Read 2 more answers
1)a chord of length 18cm midway the radius of a circle. calculate the radius of the circle correct to 1d.p. 2)if two parallel ch
kykrilka [37]
Part 1:

Given that the length of the chord is 18 cm and the chord is midway the radius of the circle. 

Thus, half the angle formed by the chord at the centre of the circle is given by:

\cos\theta=\frac{\left( \frac{1}{2} r\right)}{r}= \frac{1}{2}  \\  \\ \Rightarrow\theta=\cos^{-1}\left( \frac{1}{2} \right)=60^o

Now, 

\sin60^o= \frac{9}{r}  \\  \\ \Rightarrow r= \frac{9}{\sin60^o} =10.392

Therefore, the radius of the circle is 10.4 cm to 1 d.p.


Part 2I:

Given that the radius of the circle is 10 cm and the length of chord AB is 8 cm. Thus, half the length of the chord is 4cm. Let the distance of the mid-point O to /AB/ be x and half the angle formed by the chord at the centre of the circle be θ, then

\sin\theta= \frac{4}{10} = \frac{2}{5} \\ \\ \theta=\sin^{-1}\left( \frac{2}{5} \right)=23.6^o

Now, 

\cos23.6^o= \frac{x}{10} \\ \\ \Rightarrow x=10\cos23.6^o=9.165\approx9.2cm


Part 2II:

Given that the radius of the circle is 10cm and the angle distended is 80 degrees. Let half the length of chord CD be y, then:

\sin40^o= \frac{y}{10}  \\  \\  \\ \Rightarrow y=10\sin40^o=6.428

Thus, the length of chord CD = 2(6.428) = 12.856 which is approximately 12.9 cm.
3 0
3 years ago
Other questions:
  • Please help me<br> (6 + 8i)(4 - 7i)
    6·2 answers
  • What is 1 divided by 10? Long divison way pls
    10·2 answers
  • Solve the compound inequality <br><br> 4 (x-5) &lt;12 or x+2&gt;9
    13·1 answer
  • Which equation represents a line that is perpendicular to the line whose equation is -2y=3x+7
    15·1 answer
  • a window shaped like a parallelogram has an area of 18 1/3 square feet. The height of a window is 3 1/3 feet. How long is the ba
    5·1 answer
  • Why in these types of questions(the image) I need to multiply the dominator by itself and by the nominator. and why I can't just
    10·1 answer
  • Fraction of the diagram is shade
    11·1 answer
  • Plz help been stuck on it for awhile
    6·1 answer
  • A plumber charges $45 per hour, h, to install a new bathtub, plus the price of the bathtub.
    8·1 answer
  • Joy is making hand-painted ornaments for
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!