Answer:
$22.5
Step-by-step explanation:
2.5% of 900
0.025(900)= 22.5
Answer:
1/529
Step-by-step explanation:

Answer:
Step-by-step explanation:
From the given information:
The uniform distribution can be represented by:

The function of the insurance is:

Hence, the variance of the insurance can also be an account forum.
![Var [I_{(x}) = E [I^2(x)] - [E(I(x)]^2](https://tex.z-dn.net/?f=Var%20%5BI_%7B%28x%7D%29%20%3D%20E%20%5BI%5E2%28x%29%5D%20-%20%5BE%28I%28x%29%5D%5E2)
here;
![E[I(x)] = \int f_x(x) I (x) \ sx](https://tex.z-dn.net/?f=E%5BI%28x%29%5D%20%3D%20%5Cint%20f_x%28x%29%20I%20%28x%29%20%5C%20sx)
![E[I(x)] = \dfrac{1}{1500} \int ^{1500}_{250{ (x- 250) \ dx](https://tex.z-dn.net/?f=E%5BI%28x%29%5D%20%3D%20%5Cdfrac%7B1%7D%7B1500%7D%20%5Cint%20%5E%7B1500%7D_%7B250%7B%20%28x-%20250%29%20%5C%20dx)


Similarly;
![E[I^2(x)] = \int f_x(x) I^2 (x) \ sx](https://tex.z-dn.net/?f=E%5BI%5E2%28x%29%5D%20%3D%20%5Cint%20f_x%28x%29%20I%5E2%20%28x%29%20%5C%20sx)
![E[I(x)] = \dfrac{1}{1500} \int ^{1500}_{250{ (x- 250)^2 \ dx](https://tex.z-dn.net/?f=E%5BI%28x%29%5D%20%3D%20%5Cdfrac%7B1%7D%7B1500%7D%20%5Cint%20%5E%7B1500%7D_%7B250%7B%20%28x-%20250%29%5E2%20%5C%20dx)


∴
![Var {I(x)} = 1250^2 \Big [ \dfrac{5}{18} - \dfrac{25}{144}]](https://tex.z-dn.net/?f=Var%20%7BI%28x%29%7D%20%3D%201250%5E2%20%5CBig%20%5B%20%5Cdfrac%7B5%7D%7B18%7D%20-%20%5Cdfrac%7B25%7D%7B144%7D%5D)
Finally, the standard deviation of the insurance payment is:


≅ 404
I am not good at this so ii wont be able to solve it for ya but i can help you.
So to find the line of best fit you have to pick to pick to points on your scatter plot. Then with those two points you add the y points together then add the x points together. Your equation with be what you got in all y over x. That is your slope. I hope this helped you!