Insulation or insulating. :) Hope that helps!
If no other forces act on the object, according to Newton’s first law, the spacecraft will continue moving at a constant velocity, assuming that a planet or something with large mass doesn’t cross its path. Forces are not required to continue the motion of an object on a frictionless plane at a constant rate.
Magnetic field 'B' at a distance 'r' from an substantially
large conductor carrying current 'i' = (2x10^ -7)('i' ) / r
Magnetic field 'B' beyond the wire= (2x10^ -7)(8.15x10^18x1.6x10^ - 19 ) /0.046
=5.7 x10^ -12 tesla
As electrons move from west to east, the conventional current is from east to
west.
By means of Maxwell's right handed corkscrew rule, the way of magnetic field is
from south to north.
The answer to your thing is d
Answer:
d = 329.81m
Explanation:
V_f = V_0+a*t
V_f = Velocity final
V_0 = Velocity initial
a = acceleration
t = time
V_f = (0m/s)+(9.81m/s²)*(8.2s)
V_f = 80.442m/s
d = ((V_f-V_0)/2)*t
d = distance
d = ((80.442m/s-0m/s)/2)*(8.2s)
d = 329.81m