Answer:
<em>The momentum of the car is 35,000 kg.m/s</em>
Explanation:
<u>Momentum</u>
Momentum is often defined as <em>mass in motion.</em>
Since all objects have mass, if it's moving, then it has momentum. It can be calculated as the product of the mass by the velocity of the object:

If only magnitudes are considered:
p = mv
The car has a mass of m=1,000 kg and travels at v=35 m/s. Calculating its momentum:
p = 1,000 kg * 35 m/s
p = 35,000 kg.m/s
The momentum of the car is 35,000 kg.m/s
An object in motion will stay in motion unless acted upon another force.
Newton used this to prove that gravity existed. Without an unseen force, we could throw a ball and it would go on forever correct? Unless there was something to pull it down, in this case, gravity.
Static electricity. Like the balloon against hair
The cart travelled a distance of 14.4 m
Explanation:
The work done by a force when pushing an object is given by:

where:
F is the magnitude of the force
d is the displacement
is the angle between the direction of the force and the displacement
In this problem we have:
W = 157 J is the work done on the cart
F = 10.9 N is the magnitude of the force
, assuming the force is applied parallel to the motion of the cart
Therefore we can solve for d to find the distance travelled by the cart:

Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
Tension in the string is equal to 58.33 N ( this will be the strength of the string )
Explanation:
We have given mass m = 1.7 kg
radius of the circle r = 0.48 m
Kinetic energy is given 14 J
Kinetic energy is equal to 
So 

v = 4.05 m/sec
Centripetal force is equal to 
So tension in the string will be equal to 58.33 N ( this will be the strength of the string )