Answer:
In Milgram's experiment, compliance, or doing what the experimenter asked,
the teacher and the learner were in the same room. -C.
When you hold a spinning wheel, the wheel and you, chair included, form a system that obeys the principle of "conservation of angular momentum". This means that any changes in angular momentum within the system must accompanied by an equal and opposite change, so the net force is zero.
Answer:
option B
Explanation:
The correct answer is option B
When the displacement in the harmonic motion is maximum then kinetic energy at the maximum point is minimum and the potential energy is maximum at that point.
So, when the displacement is maximum, spring force magnitude is also maximum because the force is proportional to the displacement and also the magnitude of the acceleration is maximum so, the net force is also maximum.
Answer:
The only incorrect statement is from student B
Explanation:
The planet mercury has a period of revolution of 58.7 Earth days and a rotation period around the sun of 87 days 23 ha, approximately 88 Earth days.
Let's examine student claims using these rotation periods
Student A. The time for 4 turns around the sun is
t = 4 88
t = 352 / 58.7 Earth days
In this time I make as many rotations on itself each one with a time to = 58.7 Earth days
#_rotaciones = t / to
#_rotations = 352 / 58.7
#_rotations = 6
therefore this statement is TRUE
student B. the planet rotates 6 times around the Sun
t = 6 88
t = 528 s
The number of rotations on itself is
#_rotaciones = t / to
#_rotations = 528 / 58.7
#_rotations = 9
False, turn 9 times
Student C. 8 turns around the sun
t = 8 88
t = 704 days
the number of turns on itself is
#_rotaciones = t / to
#_rotations = 704 / 58.7
#_rotations = 12
True
The only incorrect statement is from student B
Answer:
here
Explanation:
There are two forces acting upon the skydiver - gravity (down) and air resistance (up). The force of gravity has a magnitude of m•g = (72 kg) •(9.8 m/s/s) = 706 N. ... a 3.25-kg object rightward with a constant acceleration of 1.20 m/s/s if the force of ... of 33.8 kg, how far (in meters) will it move in 1.31 seconds, starting from rest?