Answer:
Density (φ) = 0,8827 Kg/L
Specific weight (Ws) = 8,65 N/L
Specific gravity (Gs) = 0,8827 (without unit)
Explanation:
The density formula: φ =
I know the mass "m", I need to find out the volume of the cylinder (V)
V = π* r²*h
The radius "r" is equal to half the diameter (150mm) = 75mm
Now I can find out the density (φ)
φ =
= 0,8827 Kg/L
The specific weight (Ws) is the relationship between the weight of substance (oil) and its volume. We apply the following formula:
Ws = φ*g
(g = gravity = 9,8 m/s²)
Finally, specific gravity (Gs) is the ratio between the density of a substance (oil) "φ(o)" and the density of water "φ(w)" :
Gs = φ(o) / φ(w)
(φ(w) = 1 Kg/L
Hope this can help you !!
The solution is 22 2(n+3)-4&6
i think it’s B. sorry if i’m wrong
Answer:
The COP of the system is = 4.6
Explanation:
Given data
Higher pressure = 1.8 M pa
Lower pressure = 0.12 M pa
Now we have to find out high & ow temperatures at these pressure limits.
Higher temperature corresponding to pressure 1.8 M pa
°c = 335.9 K
Lower temperature corresponding to pressure 0.2 M pa
°c = 262.9 K
COP of the system is given by


COP = 4.6
Therefore the COP of the system is = 4.6
-- In combination with 610 Hz, the beat frequency is 4 Hz.
So the unknown frequency is either (610+4) = 614 Hz
or else (610-4) = 606 Hz.
In combination with 605 Hz, the beat frequency will be
either (614-605) = 9 Hz or else (606-605) = 1 Hz.
-- In actuality, when combined with the 605 Hz, the beat
frequency is too high to count accurately. That must be
the 9 Hz rather than the 1 Hz.
So the unknown is (605+9) = 614 Hz.