Answer:
The age of the horse, in human years, when Alex was born can be determined by simply deducting the Current age of Alex from the Current age of the horse in human years.
Therefore, the age of the horse, in human years, when Alex was born was 42 years.
Step-by-step explanation:
Current age of Alex = 8
Current age of the horse in human years = 50
Since the age of the horse is already stated in human years, it implies there is no need to convert the age of the horse again.
Therefore, since Alex is a human who was born 8 years ago, the age of the horse, in human years, when Alex was born can be determined by simply deducting the Current age of Alex from the Current age of the horse in human years as follows:
The age of the horse, in human years, when Alex was born = 50 - 8 = 42
Therefore, the age of the horse, in human years, when Alex was born was 42 years.
This can be presented in a table as follows:
Age of Alex Age of the Horse (in human years)
Eight years ago 0 42
Current age 8 50
Forget the '34' part of 8:34 and the '18' minutes from 3 hours and 18 minutes for now.
Just add 3 hours on to 8, to get 11. Then, bring back the 34 and 18 and add them together. 34 + 12 = 52. Now put that 52 on the end of the 11, and you get 11:52 as the end time.
Answer:
813
Step-by-step explanation:
Answer:
Part A.
Let f(x) = 0;
suppose x= a+h
such that f(x) =f(a+h) = 0
By second order Taylor approximation, we get
f(a) + hf'±(a) +
f''(a) = 0
± ![\frac{\sqrt[]{(f'(a))^{2}-2f(a)f''(a) } }{f''(a)}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B%5D%7B%28f%27%28a%29%29%5E%7B2%7D-2f%28a%29f%27%27%28a%29%20%7D%20%7D%7Bf%27%27%28a%29%7D)
So, we get the succeeding equation for Newton's method as
± ![\sqrt{f(x_{i})^{2}-2fx_{i}f''x_{i} } ]](https://tex.z-dn.net/?f=%5Csqrt%7Bf%28x_%7Bi%7D%29%5E%7B2%7D-2fx_%7Bi%7Df%27%27x_%7Bi%7D%20%7D%20%5D)
Part B.
It is evident that Newton's method fails in two cases, as:
1. if f''(x) = 0
2. if f'(x)² is less than 2f(x)f''(x)
Part C.
In case
is close to
, the choice that shouldbe made instead of ± in part A is:
f'(x) =
⇔ 
Part D.
As given
=
= h
or h =
- 
We get,
f(a) + hf'(a) +(h²/2)f''(a) = 0
or h² = -hf(a)/f'(a)
Also, (
-
)² = -(
-
)(f(
)/f'(
))
So, f(a) + hf'(a) - (f''(a)/2)(hf(a)/f'(a)) = 0
It becomes h = -f(a)/f'(a) + (h/2)[f''(a)f(a)/(f(a))²]
Also,
=
-f(
)/f'(
) + [(
-
)f''(
)f(
)]/[2(f'(
))²]