Answer:
12.5
Step-by-step explanation:
for people who don't get another quizzez assignment about ratios from their teachers, this question showed & the correct answer was 12.5 Hope this answer somehow helps.
Answer:
y = 3/2 when x = 15
Step-by-step explanation:
y = k / √1+x
2 = k / √1+8 = k/3
k = 6
y' = 6 / √1+15 = 6/4 = 3/2
We have to calculate the fourth roots of this complex number:
![z=9+9\sqrt[]{3}i](https://tex.z-dn.net/?f=z%3D9%2B9%5Csqrt%5B%5D%7B3%7Di)
We start by writing this number in exponential form:
![\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20r%3D%5Csqrt%5B%5D%7B9%5E2%2B%289%5Csqrt%5B%5D%7B3%7D%29%5E2%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B81%2B81%5Ccdot3%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B81%2B243%7D%20%5C%5C%20r%3D%5Csqrt%5B%5D%7B324%7D%20%5C%5C%20r%3D18%20%5Cend%7Bgathered%7D)
![\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}](https://tex.z-dn.net/?f=%5Ctheta%3D%5Carctan%20%28%5Cfrac%7B9%5Csqrt%5B%5D%7B3%7D%7D%7B9%7D%29%3D%5Carctan%20%28%5Csqrt%5B%5D%7B3%7D%29%3D%5Cfrac%7B%5Cpi%7D%7B3%7D)
Then, the exponential form is:

The formula for the roots of a complex number can be written (in polar form) as:

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.
To simplify the calculations, we start by calculating the fourth root of r:
![r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}](https://tex.z-dn.net/?f=r%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D18%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%3D%5Csqrt%5B4%5D%7B18%7D)
<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>
Then, we calculate the arguments of the trigonometric functions:

We can now calculate for each value of k:
![\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D0%5Ccolon%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B0%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B0%7D%7B2%7D%29%29%29%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B%5Cpi%7D%7B8%7D%29%20%5C%5C%20z_0%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%20e%5E%7Bi%5Cfrac%7B%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D1%5Ccolon%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B1%7D%7B2%7D%29%29%29%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B5%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B5%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_1%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B5%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D2%5Ccolon%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B2%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B2%7D%7B2%7D%29%29%29%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B9%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B9%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_2%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B9%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20k%3D3%5Ccolon%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B3%7D%7B2%7D%29%29%2Bi%5Ccdot%5Csin%20%28%5Cpi%28%5Cfrac%7B1%7D%7B8%7D%2B%5Cfrac%7B3%7D%7B2%7D%29%29%29%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7D%5Ccdot%28%5Ccos%20%28%5Cfrac%7B13%5Cpi%7D%7B8%7D%29%2Bi%5Ccdot%5Csin%20%28%5Cfrac%7B13%5Cpi%7D%7B8%7D%29%29%20%5C%5C%20z_3%3D%5Csqrt%5B4%5D%7B18%7De%5E%7Bi%5Cfrac%7B13%5Cpi%7D%7B8%7D%7D%20%5Cend%7Bgathered%7D)
Answer:
The four roots in exponential form are
z0 = 18^(1/4)*e^(i*π/8)
z1 = 18^(1/4)*e^(i*5π/8)
z2 = 18^(1/4)*e^(i*9π/8)
z3 = 18^(1/4)*e^(i*13π/8)
Answer:
the awnser is 250 i took the test and got it correct
Step-by-step explanation:
Answer:
No, her answer is unreasonable because 0.2 * 6 = 1.2
Step-by-step explanation:
Here in this question, we are trying to use an approximation to see if what was said to be the result of a calculation is reasonable as an answer.
Looking at her division, 2.76/6 = 0.19
To the nearest tenth , 0.19 is same as 0.2, now multiplying 0.2 by 6, what we have is 1.2 ( of which even 0.19 * 6 is expected to be less than this). we can see that this value is quite far from our expected answer of 2.76 which makes the answer an unreasonable one
Thus, the division 2.76/6 = 0.19 is not a reasonable answer