Answer:

Explanation:
Hello!
In this case, since the net ionic equation of a chemical reaction shows up the ionic species that result from the simplification of the spectator ions, which are those at both reactants and products sides, we take into account that aqueous species ionize into ions whereas liquid, solid and gas species remain unionized. In such a way, for the reaction of cesium phosphate and silver nitrate we can write the complete molecular equation:

Whereas the three aqueous salts are ionized in order to write the following complete ionic equation:

In such a way, since the cesium and nitrate ions are the spectator ions because of the aforementioned, the net ionic equation turns out:

Best regards!
It is energetically favorable for all atoms to have a complete outer
electron shell. Loosely, the atoms on the left hand side of the periodic
table only have a few extra electrons in their outer shell so it is
energetically favorable for them to lose them. The atoms on the right
hand side of the periodic table almost have enough electrons in their
outer shell and so they have a tendency to gain them.
Once electrons have left an electron shell, an atom will have a positive
charge because it has more protons (positive charges) than electrons
(negative charges). Similarly, an electron which has gained electrons to
complete its outer shell will have a negative charge because it now has
more electrons (negative charge) than protons (positive charge).
Answer:

Explanation:
Hello,
In this case, since the reaction between potassium hydroxide and nitric acid is:

We can see a 1:1 mole ratio between the acid and base, therefore, for the titration analysis, we find the following equality at the equivalence point:

That in terms of molarities and volumes is:

Thus, solving the molarity of the base (KOH), we obtain:

Regards.
B) Seawater. Because, it all has the same consistency. With the other choices, like vegetable soup, in one spoon full you may get a bit of potato but in another spoon full you may get a lima bean.
Are you gonna list the ppl?