1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren [92.7K]
2 years ago
12

Container need to be inspected

Engineering
1 answer:
Sedaia [141]2 years ago
7 0

Answer:

than look inside it

Explanation:

well if you need to inspect something, looking is very important

You might be interested in
The state of plane strain on an element is:
balu736 [363]

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2}  \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2}  \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6}  \pm 1.67 \times 10^{-4}

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2}  + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta  + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2}  + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56)  + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}

=3.335 *10^-4

\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )

ε(avg) =150 *10^-6

orientation of γmax

tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}

θ = 31.71 or -58.29

To determine the direction of γmax

\gamma _{x'y' }=  - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta  + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }=  - \frac{-300*10^{-6} - \ 0}{2} sin(63.42)  + \frac{150*10^{-6}}{2}cos(63.42)

= 1.67 *10^-4

4 0
3 years ago
If you are interested only in the temperature range of 20° to 40°C and the ADC has a 0 to 3V input range, design a signal condit
mario62 [17]

Explanation:

Temperature range → 0 to 80'c

respective voltage output → 0.2v to 0.5v

required temperature range 20'c to 40'c

Where T = 20'c respective voltage

\begin{aligned}v_{20} &=0.2+\frac{0.5-0.8}{80} \times 20 \\&=0.2+\frac{0.3}{80} \times 20 \\V_{20} &=0.275 v\end{aligned}

\begin{aligned}\text { when } T=40^{\circ} C & \text { . } \\v_{40} &=0.2+\frac{0.5-0.2}{80} \times 40 \\&=0.35 V\end{aligned}

Therefore, Sensor output changes from 0.275v to 0.35volts for the ADC the required i/p should cover the dynamic range of ADC (ie - 0v to 3v)

so we have to design a circuit which transfers input voltage 0.275volts - 0.35v to 0 - 3v

Therefore, the formula for the circuit will be

\begin{array}{l}v_{0}=\left(v_{i n}-0.275\right) G \\\sigma=\ldots \frac{3-0}{0.35-0.275}=3 / 0.075=40 \\v_{0}=\left(v_{i n}-0.275\right) 40\end{array}

The simplest circuit will be a op-amp

NOTE: Refer the figure attached

Vs is sensor output

Vr is the reference volt, Vr = 0.275v

\begin{aligned}v_{0}=& v_{s}-v_{v}\left(1+\frac{R_{2}}{R_{1}}\right) \\\Rightarrow & \frac{1+\frac{R_{2}}{R_{1}}}{2}=40 \\& \frac{R_{2}}{R_{1}}=39 \quad \Rightarrow\end{aligned}

choose R2, R1 such that it will maintain required  ratio

The output Vo can be connected to voltage buffer if you required better isolation.

3 0
2 years ago
A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.6 mm; the spe
ankoles [38]

Answer:

F =  8849 N

Explanation:

Given:

Load at a given point = F =  4250 N

Support span = L = 44 mm

Radius = R = 5.6 mm

length thickness of tested material = 12 mm

First compute the flexural strength for circular cross section using the formula below:

σ_{fs} = F_{f} L / \pi  R^{3}

σ = FL / π R³

Putting the given values in the above formula:

σ = 4250 ( 44 x 10⁻³ ) / π  ( 5.6 x 10⁻³ ) ³

  = 4250 ( 44 x 10⁻³ )  / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 (44 x 1 /1000 )) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 ( 11 / 250  ) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 187 / 3.141593 ( 5.6 x 1 / 1000 ) ³

  = 187 / 3.141593 (0.0056)³

  = 338943767.745358

  = 338.943768 x 10⁶

σ = 338 x 10⁶ N/m²

Now we compute the load i.e. F from the following formula:

F_{f} = 2 σ_{fs} d³/3 L

F = 2σd³/3L

  = 2(338 x 10⁶)(12 x 10⁻³)³ / 3(44 x 10⁻³)

  = 2 ( 338 x 1000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 2 ( 338000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12  x  1/1000  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  3  / 250  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  27  / 15625000 )  / 3 ( 44 x 10⁻³)

  = 146016  / 125 / 3 ( 44 x 1 / 1000  )

  = ( 146016  / 125 ) /  (3 ( 11 /  250 ))

  =  97344  / 11

F =  8849 N

4 0
3 years ago
A 1000 kg turbine has a rotating unbalance of 0.1 kg.m. The turbine operates at a speed between 500 to 750 rpm. What is the maxi
raketka [301]

Answer:

maximum isolator stiffness k =1764 kN-m

Explanation:

mean speed of rotation =\frac{N_1 +N_2}{2}

Nm = \frac{500+750}{2} = 625 rpm

w =\frac{2\pi Nm}{60}

  =65.44 rad/sec

F_T = mw^2 e

F_T = mew^2

       = 0.1*(65.44)^2

F_T =428.36 N

Transmission ratio =\frac{300}{428.36} = 0.7

also

transmission ratio = \frac{1}{[\frac{w}{w_n}]^{2} -1}

0.7 =\frac{1}{[\frac{65.44}{w_n}]^2 -1}

SOLVING FOR Wn

Wn = 42 rad/sec

Wn = \sqrt {\frac{k}{m}

k = m*W^2_n

k = 1000*42^2 = 1764 kN-m

k =1764 kN-m

3 0
3 years ago
(SI units) Molten metal is poured into the pouring cup of a sand mold at a steady rate of 400 cm3/s. The molten metal overflows
maxonik [38]

Answer:

diameter of the sprue at the bottom is 1.603 cm

Explanation:

Given data;

Flow rate, Q = 400 cm³/s

cross section of sprue: Round

Diameter of sprue at the top d_{top} = 3.4 cm

Height of sprue, h = 20 cm = 0.2 m

acceleration due to gravity g = 9.81 m/s²

Calculate the velocity at the sprue base

V_{base} = √2gh

we substitute

V_{base} = √(2 × 9.81 m/s² × 0.2 m )

V_{base} = 1.98091 m/s

V_{base} = 198.091 cm/s

diameter of the sprue at the bottom will be;

Q = AV = (πd_{bottom}^2/4) × V_{base}

d_{bottom} = √(4Q/πV_{base})

we substitute our values into the equation;

d_{bottom} = √(4(400 cm³/s) / (π×198.091 cm/s))

d_{bottom}  = 1.603 cm

Therefore, diameter of the sprue at the bottom is 1.603 cm

6 0
2 years ago
Other questions:
  • Which of the following is not true about Machine Learning?Machine Learning was inspired by the learning process of human beings.
    11·1 answer
  • List four reasons why we need aceuracy in machined parts.
    8·1 answer
  • Write torsion equation and explain the importance of each components.<br>​
    14·1 answer
  • The y-component of velocity for a certain 2-D flow field is given as u = 3xy + x2 . Determine the x-component of velocity if the
    12·1 answer
  • Gshyevdnmdcicm gngjc
    13·1 answer
  • A converging - diverging frictionless nozzle is used to accelerate an airstream emanating from a large chamber. The nozzle has a
    15·2 answers
  • WARNING:<br><br> when people put links in the answer it is a virus DO NOT DOWNLOAD IT
    15·2 answers
  • A steel bar with a diameter of .875 inches and a length of 15.0 ft is axially loaded with a force of 21.6 kip. The modulus of el
    10·1 answer
  • A jet of water 75m in diameter,issues with a velocity of 30m/s and impinge on a stationary plate which distort its forward motio
    11·1 answer
  • Technician A says that the definition of torque is how far the crankshaft twists in degrees.Technician B says that torque can re
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!