Answer:
The break force that must be applied to hold the plane stationary is 12597.4 N
Explanation:
p₁ = p₂, T₁ = T₂


The heat supplied =
× Heating value of jet fuel
The heat supplied = 0.5 kg/s × 42,700 kJ/kg = 21,350 kJ/s
The heat supplied =
·
= 20 kg/s
The heat supplied = 20*
= 21,350 kJ/s
= 1.15 kJ/kg
T₃ = 21,350/(1.15*20) + 485.03 = 1413.3 K
p₂ = p₁ × p₂/p₁ = 95×9 = 855 kPa
p₃ = p₂ = 855 kPa
T₃ - T₄ = T₂ - T₁ = 485.03 - 280.15 = 204.88 K
T₄ = 1413.3 - 204.88 = 1208.42 K

T₅ = 1208.42*(2/2.333) = 1035.94 K
= √(1.333*287.3*1035.94) = 629.87 m/s
The total thrust =
×
= 20*629.87 = 12597.4 N
Therefore;
The break force that must be applied to hold the plane stationary = 12597.4 N.
The spacing between sidebands is equal to 6 kHz.
<u>Given the following data:</u>
- Modulating signal = 3 kHz.
- Carrier frequency = 36 MHz.
<h3>What is a sideband?</h3>
A sideband can be defined as a band of frequencies that are lower or higher than the carrier frequency due to the modulation process. Thus, it will either be lower than or higher than the carrier frequency.
Generally, the frequency of the modulating signal is equal to the spacing between the sidebands. Therefore, a modulating signal of 3 kHz simply means that the lower sideband is <u>3 kHz</u> higher while the upper sideband is <u>3 kHz</u> lower.
Spacing = 3 kHz + 3 kHz = 6 kHz.
Read more on frequency here: brainly.com/question/3841958
Answer:
yes
Explanation:
blueprint of the construction is a prediction of project its is slightly auto cad