The component of a regenerative vapor power cycle that permits only liquid to pass through to a region of lower pressure is a Valve/trap.
<h3>What is vapor?</h3>
- In physics, a substance in the gas phase at a temperature lower than its critical temperature is referred to as a vapor or vapor.
- This means that the vapor can be condensed to a liquid by increasing the pressure on it without decreasing the temperature.
- An aerosol is distinct from a vapor.
- A suspension of minute liquid, solid, or both types of particles in a gas is known as an aerosol.
<h3>Why does vapor form?</h3>
- Evaporation or sublimation are two processes that can be used to create it.
- Unlike clouds, fog, or mist, which are only suspended drops of liquid water in the atmosphere, watevaporur is a gas and cannot be seen.
- In the atmosphere, water vapor frequently exists below the boiling point.
Learn more about vapor here:
brainly.com/question/14578189
#SPJ4
Complete Question
Complete Question is attached below.
Answer:

Explanation:
From the question we are told that:
Diameter 
Power 
Head loss 




Generally the equation for Power is mathematically given by

Therefore



Since

Where


Therefore


Answer:
Thermal resistance for a wall depends on the material, the thickness of the wall and the cross-section area.
Explanation:
Current flow and heat flow are very similar when we are talking about 1-dimensional energy transfer. Attached you can see a picture we can use to describe the heat flow between the ends of the wall. First of all, a temperature difference is required to flow heat from one side to the other, just like voltage is required for current flow. You can also see that
represents the thermal resistance. The next image explains more about the parameters which define the value of the thermal resistances which are the following:
- Wall Thickness. More thickness, more thermal resistance.
- Material thermal conductivity (unique value for each material). More conductivity, less thermal resistance.
- Cross-section Area. More cross-section area, less thermal resistance.
A expression to define the thermal resistance for the wall is as follows:
, where l is the distance between the tow sides of the wall, that is to say the wall thickness; A is the cross-section area and k is the material conducitivity.
Answer:
a) The additional time required for the truck to stop is <u>8.5 seconds</u>
b) The additional distance traveled by the truck is <u>230.05 ft</u>
Explanation:
Since the acceleration is constant, the average speed is:
(final speed - initial speed) / 2 = 0.75 v0
Since travelling at this speed for 8.5 seconds causes the vehicle to travel 690 ft, we can solve for v0:
0.75v0 * 8.5 = 690
v0 = 108.24 ft/s
The speed after 8.5 seconds is: 108.24 / 2 = 54.12 ft/s
We can now use the following equation to solve for acceleration:


a = -6.367 m/s^2
Additional time taken to decelerate: 54.12/6.367 = 8.5 seconds
Total distance traveled:

0 - 108.24^2 = 2 * (-6.367) * s
solving for s we get total distance traveled = 920.05 ft
Additional Distance Traveled: 920.05 - 690 = 230.05 ft
The smallest area of each cable if the stress is not to exceed 90MPa in bronze is 43.6 mm² and 120MPa in steel is 32.7 mm².
<h3>What is normal stress?</h3>
If the direction of deformation force is perpendicular to the cross-sectional area of the body, the stress is called normal stress. Changes in wire length and body volume will be normal.
σ = P/A
Where, σ = Normal stress
P = Pressure
A = Area
1 Kg = 9.81 N
800 kg = 7848 N
Since the rod is half bronze and half steel
800 kg = 7848/2
= 3924 N
Pₙ = Fₙ = 3924 N [n = Bronze]
Pₓ = 3924 N [x = steel]
Given,
σₙ = 90MPa
σₓ = 120MPa
Aₙ = ?
Aₓ = ?
Aₙ = Pₙ/σₙ
Aₙ = 3924/90
Aₙ = 43.6 mm²
Aₓ = Pₓ/σₓ
Aₓ = 3924/120
Aₓ = 32.7 mm²
To know more about normal stress, visit:
brainly.com/question/28012990
#SPJ9