Answer:
please help you are not the intended recipient
The largest tensile force that can be applied to the cables given a rod with diameter 1.5 is 2013.15lb
<h3>The static equilibrium is given as:</h3>
F = P (Normal force)
Formula for moment at section
M = P(4 + 1.5/2)
= 4.75p
Solve for the cross sectional area
Area = 
d = 1.5

= 1.767 inches²
<h3>Solve for inertia</h3>

= 0.2485inches⁴
Solve for the tensile force from here

30x10³ = 
30000 = 14.902 p
divide through by 14.902
2013.15 = P
The largest tensile force that can be applied to the cables given a rod with diameter 1.5 is 2013.15lb
Read more on tensile force here: brainly.com/question/25748369
Answer:
<h3>
advantages: </h3>
<em>lower power consumption, modulation system is simple</em>
<h3>disadvantages<em>:</em></h3>
<em>complex detection</em>
<h3><em>applications:</em></h3>
analog TV systems: to transmit color information
<h3><em /></h3>
<em />
<em />
<em />
<em />
Explanation:
Answer:
Q = 8.845 DEGREE
Explanation:
given data:
combine Mass for 6 cylinder (M) =15 Kg/hr
mass of each cylinder (m) = 15/6 = 2.5 Kg/hr = 0.000694 Kg/ sec
Engine speed (N)= 1500rpm
Diameter of one nozzle hole ( d) = 200 micrometer = 0.0002 m
Discharge Coefficient (Cd) = 0.75
Pressure difference = 100 MPa
Density of fuel = 800 kg/m^3
velocity of fuel is 

injected fuel volume (V) =Area of given Orifices × Fuel velocity × time of single injection × no of injection/sec
we know that p = m/ V
So
putting these value in volume equation and solve for Discharge 
Q = 8.845 DEGREE