1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delvig [45]
3 years ago
8

What is the value of x angle in a circle with center O?

Mathematics
1 answer:
AysviL [449]3 years ago
8 0

Answer:

Correct me if i am wrong but i believe it is 126

Step-by-step explanation:

Angle BOC = 252 (angles around a point = 360 so 360-108 =252)

x=126 (The ange at the centre of a circle is twice the size the angle at the circumference. 252 is at the centre and x is at the circumference so 252/2 = 126)

You might be interested in
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
4 years ago
Read 2 more answers
Sarah Meeham blends coffee for​ Tasti-Delight. She needs to prepare 190 pounds of blended coffee beans selling for ​$4.61 per po
erastovalidia [21]
I’m sorry I don’t know
6 0
3 years ago
The store,s rectangular floor is 42 meters long and 39 meters wide. How many square meters of flooring do they need? Use estimat
uranmaximum [27]
First multiply, so 42 x 39, which equals 1,638, then estimate, round 42 to 40, and 39 to 40, and do 40 x 40 = 1,600 which is close to your answer, so good.
3 0
4 years ago
Tulislah empt suku pertama dari barisan yang rumus suku ke n nya adalah Un = 3n^2-1
nirvana33 [79]
If n ∈ \mathbb{N} then
U_{0}=3(0)-1=-1
U_{1}=3(1)-1=2.
U_{2}=3(2^2)-1=11.
U_{3}=3(3^2)-1=26.
6 0
3 years ago
Please help me with this math problem!! Will give brainliest if correct!! :)
REY [17]

Step-by-step explanation:

a.

y =  |x - 1|  + 2

b.

- x + 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x \leqslant 1 \\  \\ x + 1\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:x > 1

7 0
2 years ago
Other questions:
  • 2x^2-3x-2=0 zero product property
    13·2 answers
  • At a recycling center, 1 out of every 5 bottles collected is a glass bottle. If the recycling center collects 400 bottles, how m
    11·1 answer
  • How to use distributive property for 8*45?
    6·1 answer
  • HELP PLEASE!! I DONT UNDERSTAND!!!!!!!!!! THANKS SO MUCH
    12·1 answer
  • Which graph represents the compound inequality<br>​
    12·1 answer
  • Which statements describe the function f(x)=2x+24/x^2+4x-96? Check all that apply.
    9·2 answers
  • Find the area of the regular polygon.
    10·1 answer
  • How to Find the inverse of this
    10·1 answer
  • Much better? Pls help me if good.
    11·2 answers
  • Good Luck! I might give Brainliest.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!