By the second law of thermodynamics:
Heat can not spontaneously flow from cold regions to hot regions without external work being performed on a system.
Heat transfer is the passage of thermal energy from a hot ( t B = 80° C ) to a colder body ( t A = 40° C ).
Answer: B ) Heat flows from object B to object A.
Answer:
B. CA, 14
Explanation:
Atoms of elements contain small particles known as electrons, neutrons, and protons. The nucleus of an atom is made up of neutrons and protons which are at the center of the atom. Electrons on the other hand surrounds the nucleus. Electron has negative charge while proton has a positive charge. The number of neutrons is equivalent to the number of protons . In addition, the number of protons is equal to mass number minus the number of electrons.
For the compound
, it can be broken down into
and
. Its ion has a mass of 34 and 18 electrons which means it has already lost 2 electrons.
Therefore:
For the given element, the number of electrons is 18+2 = 20 electrons.
The number of protons = 34 - 20 = 14.
And the number of neutrons is 14.
Only option B has the correct answer.
Answer:
See explanation
Explanation:
If the spot in TLC is below the solvent front, it will be observed that the spot, instead of being separated by the solvent as expected, will just dissolve away in the solvent and zero actual separation of the mixture is achieved.
If the solute is dissolved away instead of being separated by the solvent, then the experiment fails because no actual separation of the mixture is achieved.
Hence, in TLC, the spot must be applied above the solvent front so that the capillary movement of the solvent through the plate can lead to the eventual separation of the components of the mixture since the various components of the mixture will travel at different speeds through the plate.
Also, if the solvent is above the spot, the solvent may evaporate selectively from the points above the spot while separation is ongoing.
Answer:
Luiquid
Explanation:
The atoms in a liquid state of matter have a definite volume, eventhough they acquire the shape of the container that contains them, the volume will always be the same, while in a solid the shape and volume will remain constant, on the other hand for a gas, the substance will fill the container where it is, having different volumes.