Answer:
1. 0.125 mole
2. 42.5 g
3. 0.61 mole
Explanation:
1. Determination of the number of mole of NaOH.
Mass of NaOH = 5 g
Molar mass of NaOH = 23 + 16 + 1
= 40 g/mol
Mole of NaOH =?
Mole = mass /molar mass
Mole of NaOH = 5/40
Mole NaOH = 0.125 mole
2. Determination of the mass of NH₃.
Mole of NH₃ = 2.5 moles
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mass of NH₃ =?
Mass = mole × molar mass
Mass of NH₃ = 2.5 × 17
Mass of NH₃ = 42.5 g
3. Determination of the number of mole of Ca(NO₃)₂.
Mass of Ca(NO₃)₂ = 100 g
Molar mass of Ca(NO₃)₂ = 40 + 2[14 + (3×16)]
= 40 + 2[14 + 48]
= 40 + 2[62]
= 40 + 124
= 164 g/mol
Mole of Ca(NO₃)₂ =?
Mole = mass /molar mass
Mole of Ca(NO₃)₂ = 100 / 164
Mole of Ca(NO₃)₂ = 0.61 mole
Catalytic hydrogenation causes the oil to become saturated. So hydrogenated vegetable oil has fewer trans fatty acids and thereby less kinks. The greater the unsaturation (double bonds) the higher is the "kinks" in the fatty acid chains. Hydrogenated vegetable oil have higher melting point causing them to be solids at room temperature such as margarine. In the absence of double bonds (hydrogenated) the fatty acids pack tightly in a crystal lattice. Hydrogenated vegetable oil is likely to clog arteries.
The appropriate answer is d. recording and studying seismic waves. Seismic waves behave differently as the enter the different layers of the Earth. Scientists used seismic or earthquake waves to determine the different layers of the Earth. The behaviour of the waves as they move through the layers helped scientists identify the boundaries and the state of each layer; solid or liquid.
I believe the answer is 4 carbons. Glycolysis involves break down of glucose to two molecules of pyruvic acid (3 carbons) under aerobic conditions. At the end of glycolysis the two pyruvate molecules undergoes pyruvate oxidation to capture the remaining energy in the form of ATP. A carboxyl group is removed from pyruvate and released in the form carbon dioxide, leaving a two carbon molecule which forms Acetyl-CoA (2 molecules). Acetyl-CoA then serves as a fuel for the citric acid cycle in the next stage of cellular respiration.