Answer:
The answer to your question is: 0.25 l
Explanation:
Data
P1 = 1 atm
V1 = 0.5 l
P2 =2 atm
V2 = ?
T = constant
Formula
V1P1 = V2P2
Clear V2 from the formula
V2 = V1P1/P2
Substitution
V2 = (0.5)(1)/2 substitution
= 0.25 l result
Answer:
The correct answer is 4
Explanation:
Boron trifluoride (BF₃) has a molecular geometry (as shown in the image in the question) referred to as trigonal planar; this is because each of the the fluorine atoms/molecules (bonded to the central boron atom) is placed in such a way that they form the three "end points"/"domains" of an equilateral triangle. Hence, the correct option is the last option.
Number of Atoms in Gold for given mass can be calculated using following formula,
# of Moles = Number of Atoms / 6.022 × 10²³
Or,
Number of Atoms = Moles × 6.022 × 10²³ ------- (1)
Calculating Moles,
As,
Moles = Mass / M.mass
So,
Moles = 4.25 g / 196.96 g/mol
Moles = 0.0215
Putting value of mole in eq.1,
Number of Atoms = 0.0215 × 6.022 × 10²³
Number of Atoms = 1.299 × 10²²
Result:
4.25 g of Gold Nugget contains 1.299 × 10²² Atoms.
corrected question: A chemist adds 135mL of a 0.21M zinc nitrate solution to a reaction flask. Calculate the mass in grams of zinc nitrate the chemist has added to the flask. Round your answer to significant digits.
Answer:
5.37g
Explanation:
0.21M means ; 0.21mol/dm³
1dm³=1L , so we can say 0.21mol/L
if 0.21mol of Zinc nitrate is contained in 1L of water
x will be contained in 135mL of water
x= 0.21*135*10³/1
=0.02835moles
number of moles= mass/ molar mass
mass= number of moles *molar mas
molar mass of Zn(NO₃)₂=189.36 g/mol
mass= 0.02835 *189.36
mass=5.37g