We have that the fourth term of an arithmetic sequence is
a_4=14
Option C
From the question we are told
What is the fourth term of an arithmetic sequence whose first term is 23 and whose seventh term is 5?
A) 78
B) 32
C) 14
(Explain your work)
Generally the equation for the arithmetic sequence is mathematically given as

Therefore
For seventh term

Therefore
For Fourth term

a_4=14
For more information on this visit
brainly.com/question/23366835
Answer:
50/100 x X = 1.5
x 100 x100
50x = 150
÷50 ÷50
X = 3
X = 3 liters I am pretty sure
perp to x-3y=2 thru (2,4)
For perpendicular we swap the coefficients on x and y, negating one
3x + y = some constant
We get the constant in the obvious way from the point
3x + y = 3(2) + 4 = 6 + 4 = 10
Answer: 3x + y = 10
Answer:
The volume of the solid is:
Step-by-step explanation:
GIven that :

This implies that the distance between the x-axis and the axis of the rotation = 2 units
The distance between the x-axis and the inner ring is r = (2+sec x) -2
Let R be the outer radius and r be the inner radius
By integration; the volume of the of the solid can be calculated as follows:
![V = \pi \int\limits^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} [(4-2)^2 - (2+ sec \ x -2)^2]dx \\ \\ \\ V = \pi \int\limits^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} [(2)^2 - (sec \ x )^2]dx \\ \\ \\ V = \pi \int\limits^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} [4 - sec^2 \ x ]dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5Cint%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%7D%20%5B%284-2%29%5E2%20-%20%282%2B%20sec%20%5C%20x%20-2%29%5E2%5Ddx%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5Cint%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%7D%20%5B%282%29%5E2%20-%20%28sec%20%5C%20x%20%29%5E2%5Ddx%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5Cint%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%7D%20%5B4%20-%20sec%5E2%20%5C%20x%20%5Ddx)
![V = \pi [4x - tan \ x]^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} \\ \\ \\ V = \pi [4(\dfrac{\pi}{3}) - tan (\dfrac{\pi}{3}) - 4(-\dfrac{\pi}{3})+ tan (-\dfrac{\pi}{3})] \\ \\ \\ V = \pi [4(\dfrac{\pi}{3}) - tan (\dfrac{\pi}{3}) + 4(\dfrac{\pi}{3})- tan (\dfrac{\pi}{3})] \\ \\ \\ V = \pi [8(\dfrac{\pi}{3}) - 2 \ tan (\dfrac{\pi}{3}) ]](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5B4x%20-%20tan%20%5C%20%20x%5D%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%7D%20%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5B4%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20-%20tan%20%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20-%204%28-%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%2B%20tan%20%28-%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%5D%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5B4%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20-%20tan%20%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20%2B%204%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29-%20tan%20%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%5D%20%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5B8%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20%20-%202%20%5C%20%20tan%20%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20%5D)
![\mathbf{V = \pi [ \dfrac{8 \pi}{3} - 2\sqrt{3}]}](https://tex.z-dn.net/?f=%5Cmathbf%7BV%20%3D%20%5Cpi%20%5B%20%5Cdfrac%7B8%20%5Cpi%7D%7B3%7D%20-%202%5Csqrt%7B3%7D%5D%7D)