Answer:
This reactivity order reflects both the strength of the C–X bond, and the stability of X(–) as a leaving group, and leads to the general conclusion that alkyl iodides are the most reactive members of this functional class.
B. Biomass
(I guess so cause other ones are already being used)
Answer:
Mass of NH₃ produced = 34 g
Explanation:
Given data:
Mass of nitrogen = 28 g
Mass of Hydrogen = 12 g
Mass of NH₃ produced = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Moles of nitrogen:
Number of moles = mass/molar mass
Number of moles = 28 g/ 28 g/mol
Number of moles = 1 mol
Moles of hydrogen:
Number of moles = mass/molar mass
Number of moles = 12 g/ 2 g/mol
Number of moles = 6 mol
Now we will compare the moles of hydrogen and nitrogen with ammonia.
H₂ : NH₃
3 : 2
6 : 2/3×6 = 4 mol
N₂ : NH₃
1 : 2
Number of moles of ammonia produced by nitrogen are less thus it will act as limiting reactant.
Mass of ammonia produced:
Mass = number of moles × molar mass
Mass = 2 mol × 17 g/mol
Mass = 34 g
<span>Bases and Acids are chemically opposite from each other,and there are multiple ways to distinguish how they react when dissolved in water.
One accepted definition is that an acid is any chemical substance that, when it is dissolved in water, creates a solution with hydrogen ion activity greater than pure/neutral water. That is, it donates a proton to the solution. Any substance with a pH less than 7.0 is an acid, and includes substances such as vinegar and lemon juice.
By comparison, a base is any chemical substance that, when it is dissolved in water, creates a solution in which has hydrogen ion activity less than pure/neutral water. That is, it accepts protons. Any substance with a pH greater than 7.0 is a base, and includes substances such as ammonia and baking soda.</span>