Answer:
B
Explanation:
since isotopeA has bigger mass number
Answer:
823.7g
Explanation:
Using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of substance (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
Using the information given in this question as follows:
Q = 6,400 J
m = ?
c of soil = 0.840 J/g°C
∆T = 9.25°C
Using Q = mc∆T
m = Q ÷ c∆T
m = 6,400 ÷ (0.840 × 9.25)
m = 6400 ÷ 7.77
m = 823.7g
Answer:
<h2>117.94 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>117.94 moles</h3>
Hope this helps you
Answer:
51207 torr is the new pressure of the gas
Explanation:
We can solve this question using combined gas law that states:
P1V1T2 = P2V2T1
<em>Where P is pressure, V volume and T absolute temperature of 1, initial state and 2, final state of the gas</em>
<em> </em>
Computing the values of the problem:
P1 = 710torr
V1 = 5.0x10²mL
T1 = 273.15 + 30°C = 303.15K
P2 = ?
V2 = 25mL
T2 = 273.15 + 820°C = 1093.15K
Replacing:
710torr*5.0x10²mL*1093.15K = P2*25mL*303.15K
3.881x10⁸torr*mL*K = P2 * 7.579x10³mL*K
P2 = 51207 torr is the new pressure of the gas
Answer:
3
Explanation:
you must multiply everything out till everything is equal on both sides