1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
creativ13 [48]
3 years ago
5

A customer asks why rogue has a vc-turbo engine when turbo engines are for sports cars. What are two ways to respond?.

Engineering
1 answer:
aniked [119]3 years ago
7 0

Best-in-class gas engine 1 and torque 2 fuel economy and All-new engine to be assembled at Nissan's powertrain facility in Decherd, Tenn.

<h3>Rogue</h3>

Nissan has introduced an all-new Rogue for the 2021 model year, delivering high quality and customer satisfaction through its strong combination of design, safety and technology. Now, for 2022, Nissan is making its best-selling model more powerful, more fuel efficient and more fun to drive with a new 1.5-liter Variable Compression (VC) Turbo engine across the Rogue lineup.

With this information, we can conclude that the vc-turbo engine is a great advance for fuel economy.

Learn more about Nissan in brainly.com/question/24814294

You might be interested in
A developer is having a single-lane raceway constructed with a 100 mph design speed. A curveon the raceway has a radius of 1000-
Hoochie [10]

Answer:

(a) 36+45.00

(b) 24+65.00  

(c) 6+517.500

(d) 12+324.800

3 0
3 years ago
Read 2 more answers
The flow rate in the pipe system below is 0.05 m3/s. The pressure at point 1 is measured to be 260 kPa. Point 1 is 0.60 m higher
DedPeter [7]

Answer:

Explanation:

The rate of flow in the pipe system in Figure P4.5.2 is 0.05 m3/s. The pressure at point 1 is measured to be 260 kPa. All the pipes are galvanized iron with roughness value of 0.15 mm. Determine the pressure at point 2. Take the loss coefficient for the sudden contraction as 0.05 and v = 1.141 × 10−6 m2/s.

The answer to the above question is

The pressure at point 2 = 75.959 kPa

Explanation:

Bernoulli's equation with losses gives

hL = z₁ - z₃ +(P₁-P₃)/(ρ×g) + (v₁²-v₃²)/(2×g)

Between points 1 and 2, z₁ = z₃ + 0.6 m therefore

hL = 0.6 m +(P₁-P₂)/(ρ×g) + (v₁²-v₃²)/(2×g)

hL = (f₁×L₁×v₁²)/(D₁×2×g) + (f₂×L₂×v₂²)/(D₂×2×g) + (f₃×L₃×v₃²)/(D₃×2×g) + k×V₃₂/(2×g) = 0.6 +(P₁-P₂)/(ρ×g) + (v₁²-v₃²)/(2×g)

But v = Q/A

or  since A = π×D²/4 we have

A₁ = 1.77×10-2 m² , A₂ = 5.73×10-2 m², A₃ = 3.8×10-2 m²  

Therefore from v = Q/A we have v₁ = 2.83 m/s v₂ = 0.87 m/s and v₃  = 1.315 m/s  from there we find the friction coefficient from Moody Diagram as follows

ε = \frac{Roughness _. value}{ Diameter} Which gives

the friction coefficients as f₁ = 0.02, f₂ = 0.017 and f₃ =0.0175

Substituting he above values into the h_{l} equation we get h_{l} = 19.761 m

Combined head loss = 19.761 m

Hence 19.743 m  = 0.6 m +(260 kPa-P₃)/(ρ×9.81) + (6.276)/(2×9.81)

or 260 kPa-18.82 m × 9.81 m/s²×ρ=  P₃

Where ρ = density of water, we have

260000 Pa - 18.82 m×9.81 m/s²×997 kg/m³ = 75958.598 kg/m·s² = 75.959 kPa

6 0
3 years ago
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp
cricket20 [7]

Answer:

Given that;

Jello there, see explanstion for step by step solving.

A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.

Explanation:

A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.

See attachment for more clearity

6 0
3 years ago
9.19 Generate Bode magnitude and phase plots (straight-line approximations) for the following voltage transfer functions. (a) H(
Norma-Jean [14]

Answer:

attached below

Explanation:

8 0
3 years ago
A pressure gage and a manometer are connected to a compressed air tank to measure its pressure. If the reading on the pressure g
mixer [17]

Answer:

h=1.122652m

Explanation:

Assuming density of air = 1.2kg/m³

the differential pressure is given by:

h^{i} =h(\frac{density of manometer}{density of flowing air}-1)\\h^{i} =h(\frac{1000}{1.2}-1)\\ h^{i}=832.33h...(1)\\\\but\\ h^{i} =\frac{change in pressure}{air density*g} \\\\h^{i} =\frac{11*10^3}{1.2*9.81}\\\\h^{i}= 934.42...(2)\\\\equating, \\\\934.42=832.33h\\\\h=1.122652m

7 0
4 years ago
Other questions:
  • Which option is a key factor in the decision making process in the following scenario? A French company needs to import parts to
    14·1 answer
  • A metal rod, 20 mm diameter, is tested in tension (force applied axially). The total extension over a length of 80 mm is 3.04 x
    8·1 answer
  • A 15 Watt desk-type fluorescent lamp has an effective resistance of 200 ohms when operating (note: the 15 Watts is only associat
    13·1 answer
  • 50. You are not permitted to work on any equipment or machinery at any time if the
    13·1 answer
  • Water at 15°C (rho = 999.1 kg/m^3) from a garden hose fills a 1.5-L container in 2.5 s. Assume that the volume flow rate, tempe
    14·1 answer
  • 2. What is the charge, expressed in micro coulombs on two equally and similarly charges spheres placed in air with their centres
    12·1 answer
  • Air enters a constant-area combustion chamber at a pressure of 101 kPa and a temperature of 70°C with a velocity of 130 m/s. By
    8·1 answer
  • An inclined plane is used to lift a box into a moving truck the ramp is 6 M long and 1.5 M from the ground what is the mechanica
    8·1 answer
  • A steel loop ABCD of length 5ft and of 3/8" diameter is placed as shown around a 1" diameter aluminum rod AC. Cables BE and DF e
    8·1 answer
  • 1. You should
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!