Service brake system indicator is the warning that there is something wrong with the service brake system. Hence option f is correct.
<h3>
What is indicator?</h3>
Amber-colored indicator lights can be found at the front, back, and occasionally on the left and right sides of the vehicle. Whether you're turning left, right, or into oncoming traffic, you use your indicators to signal your planned change of direction.
When this light turns on, one of two things will happen. Either the parking brake is engaged or the hydraulic fluid (brake fluid) in the master cylinder is low. Your brakes are made up of a system of hydraulic oil-filled tubes called brake lines.
Thus, service brake system indicator is the warning that there is something wrong with the service brake system. Hence option f is correct.
To learn more about indicator, refer to the link below:
brainly.com/question/28093573
#SPJ1
Explanation:
The federal highway administration reports nearly 800 work zone fatalities per year.
Answer:
(b)False
Explanation:
defined as
=
Where x is the distance from centroidal x-axis
y is the distance from centroidal y-axis
dA is the elemental area.
The product of x and y can be positive or negative ,so the value of
can be positive as well as negative .
So from the above expressions we can say that the product of
is different from
.
Answer:
v = 1.076 m /s
Explanation:
Initial volume of balloon = 4/3 x 3.14 x (9.905/2)³
=508.56 m³
Final volume of balloon = 4/3 x 3.14 x (16.502/2)³
= 2351.73 m³
Increase in volume = 1843.17 m³
Cross sectional area of inlet A = 3.14 x( 1.458/2)²
A = 1.6687 m²
Volume rate of flow of air = cross sectional area x velocity of inflow
= 1 .6687 V [ V is velocity of inflow ]
Total time taken = Increase in volume / rate of flow of air
17.108 X 60 = 1843.17 / 1.6687 V
V = 
v = 1.076 m /s
Answer: $17,206.13
Explanation:
Hi, to answer this question we have to apply the next formula:
Annual electricity cost = (P x 0.746 x Ckwh x h) /η
P = compressor power = 78 hp
0.746 kw/hp= constant (conversion to kw)
Ckwh = Cost per kilowatt hour = $0.11/kWh
h = operating hours per year = 2500 h
η = efficiency = 93% = 0.93 (decimal form)
Replacing with the values given :
C = ( 78 hp x 0.746 kw/hp x 0.11 $/kwh x 2500 h ) / 0.93 = $17,206.13