Answer:
Option E
Explanation:
All the given statements are true except the velocity gradients normal to the flow direction are small since these are not normally small. It's true that viscous effects are present only inside the boundary layer and the fluid velocity equals the free stream velocity at the edge of the boundary layer. Moreover, Reynolds number is greater than unity and the fluid velocity is zero at the surface of the object.
Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.
The right components for gsm architecture that consists of the hardware or physical equipment such as digital signal processors, radio transceiver, display, battery, case and sim card is the Mobile station.
<h3>What are the 4 main components?</h3>
In GSM, a cell station includes 4 fundamental additives: Mobile termination (MT) - gives not unusualplace features consisting of: radio transmission and handover, speech encoding and decoding, blunders detection and correction, signaling and get right of entry to to the SIM. The IMEI code is connected to the MT.
Under the GSM framework, a cell tele cell smartphone is called a Mobile Station and is partitioned into wonderful additives: the Subscriber Identity Module (SIM) and the Mobile Equipment (ME).
Read more about the mobile station:
brainly.com/question/917245
#SPJ4