Answer: Application.
Explanation:
The question on wether to contine the use of cadavers in the lab for test is being centered around its application. Cadaver which is same as a corpse or dead body is used in crash site during automobil test in lab, some of this cadavers are been disrespected with their applications in the automobile industries because many didn’t consent to be used in those experiments or test.
Answer:
(a) dynamic viscosity = 
(b) kinematic viscosity = 
Explanation:
We have given temperature T = 288.15 K
Density 
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120

= 291.15
when T = 288.15 K
For kinematic viscosity :


Answer:
Yes, fracture will occur
Explanation:
Half length of internal crack will be 4mm/2=2mm=0.002m
To find the dimensionless parameter, we use critical stress crack propagation equation
and making Y the subject

Where Y is the dimensionless parameter, a is half length of crack, K is plane strain fracture toughness,
is critical stress required for initiating crack propagation. Substituting the figures given in question we obtain

When the maximum internal crack length is 6mm, half the length of internal crack is 6mm/2=3mm=0.003m
and making K the subject
and substituting 260 MPa for
while a is taken as 0.003m and Y is already known

Therefore, fracture toughness at critical stress when maximum internal crack is 6mm is 42.455 Mpa and since it’s greater than 40 Mpa, fracture occurs to the material
Answer:
Heat transfer = 2.617 Kw
Explanation:
Given:
T1 = 300 k
T2 = 440 k
h1 = 300.19 KJ/kg
h2 = 441.61 KJ/kg
Density = 1.225 kg/m²
Find:
Mass flow rate = 1.225 x [1.3/60]
Mass flow rate = 0.02654 kg/s
mh1 + mw = mh2 + Q
0.02654(300.19 + 240) = 0.02654(441.61) + Q
Q = 2.617 Kw
Heat transfer = 2.617 Kw