Answer:
0.11 mol
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of oxygen in a sample of acetic acid. How many moles of hydrogen are in the sample?</em>
Step 1: Given data
- Formula of acetic acid: CH₃CO₂H
- Moles of oxygen in the sample of acetic acid: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula of acetic acid, the molar ratio of H to O is 4:2.
Step 3: Calculate the moles of atoms of hydrogen
We will use the theoretical molar ratio for acetic acid.
0.054 mol O × (4 mol H/2 mol O) = 0.11 mol H
Answer is: <span>the molarity of the diluted solution 0,043 M.
</span>V(NaOH) = 75 mL ÷ 1000 mL/L = 0,075 L.
c(NaOH) = 0,315 M = 0,315 mol/L.
n(NaOH) = c(NaOH) · V(NaOH).
n(NaOH) = 0,075 L · 0,315 mol/L.
n(NaOH) = 0,023625 mol.
V(solution) = 0,475 L + 0,75 L.
c(solution) = 0,023625 mol ÷ 0,550 L.
c(solution) = 0,043 mol/L.
Answer : The molarity of
in the solution is 1.5 M.
Explanation : Given,
Moles of
= 3.0 mol
Volume of solution = 2.00 L
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:

Therefore, the molarity of
in the solution is 1.5 M.
When the salt AgI dissolves, it dissociates as follows;
AgI --> Ag⁺ + I⁻
molar solubility of salt is the amount of salt that can be dissolved in 1 L of solution
since the ions dissociated are in 1:1 molar ratio, the molar solubility of the ions are equivalent to the molar solubility of the salt.
ksp is the solubility product constant of the salt
ksp = [Ag⁺][I⁻]
ksp = (9.1 x 10⁻⁹ mol/L)²
ksp = 8.28 x 10⁻¹⁷