<em>The</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>5</em><em>5</em><em>3</em><em>8</em><em>.</em><em>9</em><em>6</em><em> </em><em>units</em><em>^</em><em>2</em>
<em>please</em><em> </em><em>see</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> for</em><em> </em><em>full</em><em> solution</em><em> </em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
Answer:

Step-by-step explanation:
Assuming you are supposed to simplify:

Then we need to apply the product rule of indices.

So we multiply to get:

We now simplify the exponents to get:

Therefore the required product is

Triangle ABC is translated 3 units right and 2 units up
by looking at point A (-4,5) which is translated to A'(-1,7)
we can tell by looking at the points that -4 is shifted by 3 units to the right ti reach -1 and 5 is shifted upwards by 2 units to reach 7
Not sure if I'm right but I believe they intersect at (1,4).
<h2>-2+5i and 2+5i</h2>
Step-by-step explanation:
Let the complex numbers be
.
Given, sum is
, difference is
and product is
.
⇒ 
⇒ 


Hence, all three equations are consistent yielding the complex numbers
.