Answer:
Step-by-step explanation:
Answer:
Parallel line:

Perpendicular line:

Step-by-step explanation:
we are given equation 4x+5y=19
Firstly, we will solve for y

we can change it into y=mx+b form


so,

Parallel line:
we know that slope of two parallel lines are always same
so,

Let's assume parallel line passes through (1,1)
now, we can find equation of line

we can plug values

now, we can solve for y

Perpendicular line:
we know that slope of perpendicular line is -1/m
so, we get slope as

Let's assume perpendicular line passes through (2,2)
now, we can find equation of line

we can plug values

now, we can solve for y

Answer:
8, 20 and 6
Step-by-step explanation:
A coefficient is the numerical part of an algebraic term. Example: in the term 2x the coefficient is 2.
The numbers are: 36 and 11 .
______________________________________________
Explanation:
______________________________________________
Let us represent the TWO (2) numbers with the variables;
"x" and "y" .
__________________________________________
x + y = 47 .
y − x = 25.
__________________________________________
Since: " y − x = 25 " ;
Solve for "y" in terms of "x" ;
y − x = 25 ;
Add "x" to each side of the equation:
_____________________________________________
y − x + x = 25 + x ;
to get:
y = 25 + x .
Now, since:
x + y = 47 ;
Plug in "(25 + x)" as a substitution for "y"; to solve for "x" :
x + (25 + x) = 47 ;
x + 25 + x + 47 ;
2x + 25 = 47 ;
Subtract "25" from each side of the equation:
2x + 25 − 25 = 47 − 25 ;
2x = 22 ;
Divide EACH SIDE of the equation by "2" ;
to isolate "x" on one side of the equation; and to solve for "x" ;
2x / 2 = 22 / 2 ;
x = 11 ;
______________________________________________
x + y = 47<span> ;
</span>Plug in "11" for "x" into the equation ; to solve for "y" ;
11 + y = 47 ;
Subtract "11" from EACH SIDE of the equation;
to isolate "y" on one side of the equation; and to solve for "y" ;
11 + y − 11 = 47 − 11 ;
y = 36 .
___________________________________________
So: x = 11 , y = 36 ;
___________________________________________
Let us check our work:
y − x = 25 ;
36 − 11 =? 25 ? Yes!
x + y = 47 ;
36 + 11 =? 47 ? Yes!
______________________________________________
The numbers are: 36 and 11 .
______________________________________________